We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Long Noncoding RNAs Maintain Antigenic Variation in the Malaria Parasite

By LabMedica International staff writers
Posted on 11 Mar 2015
Control of DNA expression by long noncoding RNAs has been found to underlie antigenic variation, the mechanism by which the malaria parasite Plasmodium falciparum maintains its virulence and evades human immune attack.

Long noncoding RNAs (long ncRNAs, lncRNA) are non-protein coding transcripts longer than 200 nucleotides. More...
This somewhat arbitrary limit distinguishes lncRNAs from small regulatory RNAs such as microRNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and other short RNAs. While lncRNAs are known to be involved in numerous biological roles including imprinting, epigenetic gene regulation, cell cycle and apoptosis, and metastasis and prognosis in solid tumors, their function in parasitic diseases has not been clarified.

Plasmodium falciparum expresses its primary virulence determinants in a mutually exclusive manner and evades human immune attack through switches in expression between different variants of a large gene family named var. Investigators at the Hebrew University of Jerusalem (Israel) sought an explanation as to how P. falciparum was able to express only one var gene at a time while the rest of the family was maintained silenced.

They reported in the February 17, 2015, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that antisense lncRNAs initiating from var introns were associated with the single active var gene at the time in the cell cycle when the single var upstream promoter was active. These antisense transcripts were incorporated into chromatin, and expression of these antisense lncRNAs triggered activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules downregulated the active var gene, erased the epigenetic memory, and induced expression switching.

Senior author Dr. Ron Dzikowski, professor of microbiology and molecular genetics at the Hebrew University of Jerusalem, said, “We believe this breakthrough has exposed the tip of the iceberg in understanding how the deadliest malaria parasite regulates the selective expression of its genes, enabling it to evade the immune system. Understanding the mechanisms by which the parasite evades immunity takes us closer to finding ways to either block this ability, or force the parasite to expose its entire antigenic repertoire and thus allow the human immune system to overcome the disease. Such findings can help pave the way for development of new therapies and vaccines for malaria.”

Related Links:

Hebrew University of Jerusalem 



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Industry

view channel
Image: The LIAISON NES molecular point-of-care platform (Photo courtesy of Diasorin)

Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform

Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.