We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Time-Release Microcapsules Deliver Anti-Inflammatory Hormone to Repair Cartilage Damaged by Osteoarthritis

By LabMedica International staff writers
Posted on 03 Feb 2015
Print article
Image: The micrograph depicts a CNP microcapsule. A new treatment delivery method based on CNP microcapsules could reduce inflammation in cartilage affected by osteoarthritis and reverse damage to tissue (Photo courtesy of the Queen Mary University of London).
Image: The micrograph depicts a CNP microcapsule. A new treatment delivery method based on CNP microcapsules could reduce inflammation in cartilage affected by osteoarthritis and reverse damage to tissue (Photo courtesy of the Queen Mary University of London).
Microcapsules loaded with C-type natriuretic peptide (CNP) have been shown to reduce the type of inflammation characteristic of osteoarthritis (OA) in a model system based on the culture of animal cartilage tissue.

CNP is processed proteolytically to form a secreted hormone of the natriuretic peptide family. The hormone regulates the growth and differentiation of cartilaginous growth plate chondrocytes and may also be vasoactive (causing constriction or dilation of blood vessels) and natriuretic (inhibiting reabsorption of cations, particularly sodium, from urine). Chondrocytes have the potential to repair cartilage damage observed in (OA), but developing treatments for OA based on CPN has been challenging due to poor targeting and difficulty in delivery of the hormone, which readily breaks down in vivo.

To overcome the problems of targeting and delivery, investigators at Queen Mary University of London (United Kingdom) prepared polyelectrolyte microcapsules loaded with CNP and examined whether a layer-by-layer (LbL) approach could have protective effects in cartilage explants treated with the pro-inflammatory cytokine, interleukin-1beta (IL-1beta). The two-micrometer in diameter microcapsules comprised individual CNP-containing layers that released the hormone slowly over time.

Results published in the January 4, 2015, online edition of the journal Biomacromolecules revealed that images obtained by SEM (scanning electron microscopy) showed uniform, spherical microcapsules two to three micrometers in diameter with morphological characteristic similar to templates loaded with or without CNP. The protein was localized around the external surface of the microcapsules with encapsulation efficiencies more than 82.9%. CNP release profiles were broadly similar following nine days of culture. The presence of CNP microcapsules did not significantly affect cell viability (80%) with DNA values that remained stable throughout the culture conditions. Treatment of cartilage explants with CNP microcapsules led to concentration-dependent inhibition of nitric oxide (NO) release in response to IL-1beta and restoration of matrix synthesis.

The results demonstrated the potential for controlled delivery of CNP to dampen pro-inflammatory effects induced by IL-1beta in cartilage explants and to promote cartilage repair in vivo.

Senior author Dr. Tina Chowdhury, associate professor of bioengineering at Queen Mary University of London, said, "If this method can be transferred to patients it could drastically slow the progression of osteoarthritis and even begin to repair damaged tissue. CNP is currently available to treat other conditions such as skeletal diseases and cardiovascular repair. If we could design simple injections using the microcapsules, this means the technology has the potential to be an effective and relatively cheap treatment that could be delivered in the clinic or at home."

Related Links:

Queen Mary University of London


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.