We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Time-Release Microcapsules Deliver Anti-Inflammatory Hormone to Repair Cartilage Damaged by Osteoarthritis

By LabMedica International staff writers
Posted on 03 Feb 2015
Microcapsules loaded with C-type natriuretic peptide (CNP) have been shown to reduce the type of inflammation characteristic of osteoarthritis (OA) in a model system based on the culture of animal cartilage tissue.

CNP is processed proteolytically to form a secreted hormone of the natriuretic peptide family. More...
The hormone regulates the growth and differentiation of cartilaginous growth plate chondrocytes and may also be vasoactive (causing constriction or dilation of blood vessels) and natriuretic (inhibiting reabsorption of cations, particularly sodium, from urine). Chondrocytes have the potential to repair cartilage damage observed in (OA), but developing treatments for OA based on CPN has been challenging due to poor targeting and difficulty in delivery of the hormone, which readily breaks down in vivo.

To overcome the problems of targeting and delivery, investigators at Queen Mary University of London (United Kingdom) prepared polyelectrolyte microcapsules loaded with CNP and examined whether a layer-by-layer (LbL) approach could have protective effects in cartilage explants treated with the pro-inflammatory cytokine, interleukin-1beta (IL-1beta). The two-micrometer in diameter microcapsules comprised individual CNP-containing layers that released the hormone slowly over time.

Results published in the January 4, 2015, online edition of the journal Biomacromolecules revealed that images obtained by SEM (scanning electron microscopy) showed uniform, spherical microcapsules two to three micrometers in diameter with morphological characteristic similar to templates loaded with or without CNP. The protein was localized around the external surface of the microcapsules with encapsulation efficiencies more than 82.9%. CNP release profiles were broadly similar following nine days of culture. The presence of CNP microcapsules did not significantly affect cell viability (80%) with DNA values that remained stable throughout the culture conditions. Treatment of cartilage explants with CNP microcapsules led to concentration-dependent inhibition of nitric oxide (NO) release in response to IL-1beta and restoration of matrix synthesis.

The results demonstrated the potential for controlled delivery of CNP to dampen pro-inflammatory effects induced by IL-1beta in cartilage explants and to promote cartilage repair in vivo.

Senior author Dr. Tina Chowdhury, associate professor of bioengineering at Queen Mary University of London, said, "If this method can be transferred to patients it could drastically slow the progression of osteoarthritis and even begin to repair damaged tissue. CNP is currently available to treat other conditions such as skeletal diseases and cardiovascular repair. If we could design simple injections using the microcapsules, this means the technology has the potential to be an effective and relatively cheap treatment that could be delivered in the clinic or at home."

Related Links:

Queen Mary University of London



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
Urine Chemistry Control
Dropper Urine Chemistry Control
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.