We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Organoids Aid Discovery of New Approaches for Treating Pancreatic Cancer

By LabMedica International staff writers
Posted on 25 Jan 2015
Print article
Image: Researchers have developed a three-dimensional culture system to grow organoids from mouse and human pancreatic tissue. The technology promises to change the way pancreatic cancer research is done, offering a path to personalized treatment approaches (Photo courtesy of Cold Springs Harbor Laboratory).
Image: Researchers have developed a three-dimensional culture system to grow organoids from mouse and human pancreatic tissue. The technology promises to change the way pancreatic cancer research is done, offering a path to personalized treatment approaches (Photo courtesy of Cold Springs Harbor Laboratory).
Cancer researchers have established a method for culturing organoids from normal and cancerous mouse and human pancreatic tissues that is expected to boost development of personalized treatment approaches for this deadly disease.

Since pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment, methods to identify and study molecular pathways involved in tumor development are urgently needed. Towards this end investigators at Cold Spring Harbor Laboratory (NY, USA) established organoid models from normal and cancerous mouse and human pancreas tissues. Pancreatic organoids could be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Normal ductal cells that are able to develop into pancreatic cancer represent only about 10% of the cells in the pancreas, but the organoids were entirely composed of ductal cells, which eliminated surrounding cell types that often contaminate pancreatic samples.

Details published in the December 2014 online edition of the journal Cell revealed that the organoids were grown as hollow spheres within a complex gel-like substance filled with growth-inducing factors and connecting fibers. Once they had grown to a sufficient size, the organoids were transplanted into mice, where they fully recapitulated all the stages of pancreatic cancer development from early-grade neoplasms that progressed to locally invasive and metastatic carcinomas.

Due to their ability to be manipulated genetically, organoids served as an ideal platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of mouse pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrated that organoids were a useful model system to discover characteristics of this deadly malignancy.

“With this development, we are now able to culture both mouse and human organoids, providing a very powerful tool in our fight against pancreatic cancer,” said senior author Dr. David Tuveson, professor of pancreatic cancer medicine at Cold Spring Harbor Laboratory. “We hope to make this available to the entire pancreatic cancer research community.”

Related Links:

Cold Spring Harbor Laboratory


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: Comparison of traditional histopathology imaging vs. PARS raw data (Photo courtesy of University of Waterloo)

AI-Powered Digital Imaging System to Revolutionize Cancer Diagnosis

The process of biopsy is important for confirming the presence of cancer. In the conventional histopathology technique, tissue is excised, sliced, stained, mounted on slides, and examined under a microscope... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.