We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Preserving Endogenous Cardiac Macrophages Following Heart Attack Reduces Scarring and Promotes Healing

By LabMedica International staff writers
Posted on 10 Nov 2014
Cardiac disease researchers have identified a distinct population of macrophages within the adult heart that after injury promotes cardiac recovery through cardiomyocyte proliferation and angiogenesis.

Investigators at Washington University School of Medicine (St. More...
Louis, MO, USA) found, however, that following injury to the adult heart, this pool of endogenous macrophages is overrun and crowded out by pro-inflammatory macrophages derived from monocytes that migrate to the site of injury from the bone marrow.

The two types of macrophages can be distinguished by expression of the surface marker CCR2 (C-C chemokine receptor type 2). Macrophages without CCR2 originate in the heart; those with CCR2 come from the bone marrow. CCR2 is a receptor for monocyte chemoattractant protein-1 (CCL2), which is involved in monocyte infiltration in inflammatory diseases such as rheumatoid arthritis as well as in the inflammatory response against tumors.

The investigators induced injuries in a neonatal mouse model that mimicked the damage caused by a heart attack to the adult human heart. They reported in the October 27, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that preventing recruitment of monocyte-derived macrophages to the adult heart preserved endogenous cardiac macrophage subsets, reduced inflammation, and enhanced tissue repair. These findings indicated that endogenous macrophages were key mediators of cardiac recovery and suggested that therapeutics targeting distinct macrophage lineages might serve as novel treatments for heart failure.

“Researchers have known for a long time that the neonatal mouse heart can recover well from injury, and in some cases can even regenerate,” said first author Dr. Kory J. Lavine, instructor in medicine at the Washington University School of Medicine. “If you cut off the lower tip of the neonatal mouse heart, it can grow back. But if you do the same thing to an adult mouse heart, it forms scar tissue. The same macrophages that promote healing after injury in the neonatal heart also are present in the adult heart, but they seem to go away with injury. This may explain why the young heart can recover while the adult heart cannot.”

“When we chemically blocked CCR2 expression, we found that the macrophages from the bone marrow did not come in,” said Dr. Lavine. “And the macrophages native to the heart remained. We saw reduced inflammation in these injured adult hearts, less oxidative damage and improved repair. We also saw new blood vessel growth. By blocking the CCR2 signaling, we were able to keep the resident macrophages around and promote repair.”

Related Links:
Washington University School of Medicine



New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
New
Silver Member
PCR Plates
Diamond Shell PCR Plates
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Impaired vascular function in patients with chronic kidney disease (A K Grotle et al., Am J Physiol Renal Physiol (2025). DOI: 10.1152/ajprenal.00158.2025)

Kidney Disease Blood Marker Could Also Identify Cardiovascular Problems

Chronic kidney disease (CKD) affects millions worldwide and is strongly linked to cardiovascular complications rather than kidney failure itself. Patients with CKD often experience vascular dysfunction... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.