We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Targeted Nanoparticles Deliver Oral Insulin in Mouse Model

By LabMedica International staff writers
Posted on 12 Dec 2013
A paper described the preparation of a novel class of nanoparticles capable of crossing the intestinal barrier and delivering clinically relevant amounts of drugs such as insulin.

Adoption of nanoparticle therapeutic agents has been slow, partly due to the necessity for delivering these drugs by injection. More...
Oral administration of nanoparticles is preferred but it has remained a challenge, since transport across the intestinal epithelium is limited.

Investigators at Harvard Medical School (Boston, MA, USA) and the Massachusetts Institute of Technology (Cambridge, USA) created a novel class of nanoparticles coated with antibodies specific for the neonatal Fc receptor (FcRn), which mediates the transport of immunoglobulin G antibodies across epithelial barriers.

Their results presented in the November 27, 2013, online edition of the journal Science Translational Medicine showed that these nanoparticles were efficiently transported across the intestinal epithelium using both in vitro and in vivo models. In mice, orally administered FcRn-targeted nanoparticles crossed the intestinal epithelium and reached systemic circulation with a mean absorption efficiency of 13.7% per hour compared with only 1.2% per hour for nontargeted nanoparticles.

Targeted nanoparticles containing insulin, as model nanoparticle-based therapy for diabetes, were orally administered at a clinically relevant insulin dose and it elicited a prolonged hypoglycemic response in wild-type mice. This effect was abolished in mice that had been genetically engineered to lack the FcRn gene, indicating that the enhanced nanoparticle transport was specifically due to FcRn.

"The novelty of actively being able to transport targeted nanoparticles across cell barriers can potentially open up a whole new set of opportunities in nanomedicine," said senior author Dr. Omid Farokhzad, professor of nanomedicine and biomaterials at Harvard Medical School. "The body has receptors that are involved in shuttling proteins across barriers, as is the case in the placenta between the mother and fetus, or in the intestine, or between the blood and the brain. By hitching a ride from these transporters, the nanoparticles can enter various impermeable tissues. If you can penetrate the mucosa in the intestine, maybe next you can penetrate the mucosa in the lungs, maybe the blood-brain barrier, maybe the placental barrier."

Related Links:

Harvard Medical School
Massachusetts Institute of Technology



New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
ESR Analyzer
TEST1 2.0
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: EvoLiver is the first test to receive FDA Breakthrough Device Designation in five years in the liver cancer surveillance space (Photo courtesy of Mursla Bio)

Patient-Friendly Blood Test to Transform Liver Cancer Surveillance

Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is the fastest-growing cause of cancer-related deaths. Although clinical guidelines recommend routine surveillance for high-risk... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.