We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Synthetic Antibiotic Kills Bacteria and Prevents Biofilm Formation

By LabMedica International staff writers
Posted on 14 Nov 2013
The peptidomimetic compound HDM-4 (Host Defence Peptidomimetic 4) exhibits broad-spectrum antibacterial activity against Gram-negative bacteria and inhibits the formation of biofilms.

A peptidomimetic is a small protein-like molecular chain designed to mimic a peptide. More...
They typically arise either from modification of an existing peptide, or by designing similar systems that mimic peptides, such as peptoids and beta-peptides. The altered chemical structure is designed to favor molecular properties increasing stability or biological activity. These modifications involve changes to the peptide that will not occur naturally (such as altered backbones or the incorporation of non-natural amino acids).

Investigators at the University of Copenhagen (Denmark) and their colleagues at the University of British Columbia (Canada) recently characterized HDM-4's mode of action against Gram-negative bacteria.

They reported in the October 10, 2013, issue of the journal Chemistry & Biology that HDM-4 generated holes in the outer membrane and partly depolarized the inner membrane at its minimal inhibitory concentration (MIC). In addition, HDM-4 rapidly became distributed within the bacterial cell at lethal concentrations that could bind to DNA.

The multimodal action of HDM-4 resulted in it being less likely to lead to resistance development as compared to single-target antibiotics. The compound exhibited multispecies anti-biofilm activity at sub-MIC levels. Furthermore, HDM-4 modulated the host's immune response by inducing the release of the chemoattractants interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1), and MCP-3 from human peripheral blood mononuclear cells. Additionally, the compound suppressed lipopolysaccharide-mediated inflammation by reducing the release of the proinflammatory cytokines IL-6 and tumor necrosis factor-alpha (TNF-alpha).

“We have succeeded in preparing and characterizing a very stable substance that kills multiresistant bacteria extremely quickly and effectively. The most interesting aspect is that the bacteria are attacked using a multifunctional mechanism that drastically reduces the risk of resistance development compared with traditional antibiotics,” said first author Dr. Rasmus Jahnsen, a researcher on drug design and pharmacology at the University of Copenhagen. “The killing mechanism involves destabilizing the bacterial membrane and binding onto the bacteria’s DNA, which in both cases results in the death of the bacteria. We have also shown that the substance can activate the human body’s own immune cells, strengthening its defense against bacteria during infection.”

“Only a tiny fraction of pharmaceutical research is devoted to development of new antibiotics — partly because research into cancer and chronic diseases such as diabetes and cardiovascular diseases are seen as better long-term investments. This leaves us in the extremely unfortunate situation where infectious diseases once again pose extremely serious threats to human health as the efficacy of medical drugs continues to be undermined by bacterial resistance. It is therefore important to conduct more research into new antibiotics,” said Dr. Jahnsen.

Related Links:

University of Copenhagen
University of British Columbia



New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Serological Pipet Controller
PIPETBOY GENIUS
New
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.