We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Synthetic Antibiotic Kills Bacteria and Prevents Biofilm Formation

By LabMedica International staff writers
Posted on 14 Nov 2013
The peptidomimetic compound HDM-4 (Host Defence Peptidomimetic 4) exhibits broad-spectrum antibacterial activity against Gram-negative bacteria and inhibits the formation of biofilms.

A peptidomimetic is a small protein-like molecular chain designed to mimic a peptide. More...
They typically arise either from modification of an existing peptide, or by designing similar systems that mimic peptides, such as peptoids and beta-peptides. The altered chemical structure is designed to favor molecular properties increasing stability or biological activity. These modifications involve changes to the peptide that will not occur naturally (such as altered backbones or the incorporation of non-natural amino acids).

Investigators at the University of Copenhagen (Denmark) and their colleagues at the University of British Columbia (Canada) recently characterized HDM-4's mode of action against Gram-negative bacteria.

They reported in the October 10, 2013, issue of the journal Chemistry & Biology that HDM-4 generated holes in the outer membrane and partly depolarized the inner membrane at its minimal inhibitory concentration (MIC). In addition, HDM-4 rapidly became distributed within the bacterial cell at lethal concentrations that could bind to DNA.

The multimodal action of HDM-4 resulted in it being less likely to lead to resistance development as compared to single-target antibiotics. The compound exhibited multispecies anti-biofilm activity at sub-MIC levels. Furthermore, HDM-4 modulated the host's immune response by inducing the release of the chemoattractants interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1), and MCP-3 from human peripheral blood mononuclear cells. Additionally, the compound suppressed lipopolysaccharide-mediated inflammation by reducing the release of the proinflammatory cytokines IL-6 and tumor necrosis factor-alpha (TNF-alpha).

“We have succeeded in preparing and characterizing a very stable substance that kills multiresistant bacteria extremely quickly and effectively. The most interesting aspect is that the bacteria are attacked using a multifunctional mechanism that drastically reduces the risk of resistance development compared with traditional antibiotics,” said first author Dr. Rasmus Jahnsen, a researcher on drug design and pharmacology at the University of Copenhagen. “The killing mechanism involves destabilizing the bacterial membrane and binding onto the bacteria’s DNA, which in both cases results in the death of the bacteria. We have also shown that the substance can activate the human body’s own immune cells, strengthening its defense against bacteria during infection.”

“Only a tiny fraction of pharmaceutical research is devoted to development of new antibiotics — partly because research into cancer and chronic diseases such as diabetes and cardiovascular diseases are seen as better long-term investments. This leaves us in the extremely unfortunate situation where infectious diseases once again pose extremely serious threats to human health as the efficacy of medical drugs continues to be undermined by bacterial resistance. It is therefore important to conduct more research into new antibiotics,” said Dr. Jahnsen.

Related Links:

University of Copenhagen
University of British Columbia



New
Gold Member
Hybrid Pipette
SWITCH
Collection and Transport System
PurSafe Plus®
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The enhanced collaboration builds upon the successful launch of the AmplideX Nanopore Carrier Plus Kit in March 2025 (Photo courtesy of Bio-Techne)

Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.