We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cellular Heating, Nanotech System Developed to Improve Ovarian Cancer Treatment

By LabMedica International staff writers
Posted on 06 Nov 2013
A new drug delivery system that incorporates heat, nanotechnology, and chemotherapy is showing potential in improving the treatment of ovarian cancer.

The combination of heat, chemotherapeutic agents, and a novel delivery system based on nanotechnology may substantially improve the treatment of ovarian cancer while reducing side effects from toxic drugs, researchers from Oregon State University (OSU; Corvallis, USA) reported in a new study. More...
The findings, up to now only performed in a laboratory environment, reveals that this combination of mild hyperthermia and chemotherapy can kill 95% of ovarian cancer cells, and scientists reported that they expect to improve on those results in continued research.

The research is important, the researchers noted, because ovarian cancer, a leading causes of cancer-related deaths in women, frequently develops resistance to chemotherapeutic drugs if it returns after an initial remission. It kills more than 150,000 women worldwide every year. “Ovarian cancer is rarely detected early, and because of that chemotherapy is often needed in addition to surgery,” said Dr. Oleh Taratula, an assistant professor in the OSU College of Pharmacy. “It’s essential for the chemotherapy to be as effective as possible the first time it's used, and we believe this new approach should help with that.”

Elevated temperatures are known to help kill cancer cells, but heating just the cancer cells is problematic. The new system incorporates the use of iron oxide nanoparticles that can be coated with a cancer-killing drug and then heated once they are imbedded in the cancer cell. Other features have also been developed to optimize the new system, in a unique collaboration between material science specialists, engineers, and pharmaceutical researchers.

A peptide is used that helps guide the nanoparticle specifically to cancer cells, and the nanoparticle is just the right size so the immune system will not reject it. A customized polyethylene glycol coating additionally adds to the “stealth” effect of the nanoparticles and keeps them from clumping up, and the interaction between the cancer agent and a polymer on the nanoparticles gets weaker in the acidic environment of cancer cells, aiding release of the drug at the right place.

“The hyperthermia, or heating of cells, is done by subjecting the magnetic nanoparticles to an oscillating, or alternating magnetic field,” said Dr. Pallavi Dhagat, an associate professor in the OSU School of Electrical Engineering and Computer Science, and co-author on the study. “The nanoparticles absorb energy from the oscillating field and heat up.”

The result, in laboratory tests with ovarian cancer cells, was that a slight dose of the chemotherapeutic drug, combined with heating the cells to about 45 °C, destroyed nearly all the cells and was much more effective than either the drug or heat this research would leave approximately 70% of the cancer cells alive. With this new strategy, only 5% were still viable.

The research was published October 2013 in the International Journal of Pharmaceutics, as a collaboration of researchers in the OSU College of Pharmacy, College of Engineering, and Ocean NanoTech (Springdale, AR, USA).

“I’m very excited about this delivery system,” Dr. Taratula said. “Cancer is always difficult to treat, and this should allow us to use lower levels of the toxic chemotherapeutic drugs, minimize side effects, and the development of drug resistance, and still improve the efficacy of the treatment. We’re not trying to kill the cell with heat, but using it to improve the function of the drug.”

Iron oxide particles had been used before in some medical treatments, according to the researchers, but not with the complete system developed at OSU. Animal tests, and eventually human trials, will be needed before the new system is available for use. Drug delivery systems such as this may later be used in other forms of cancer, such as prostate or pancreatic cancer, to help improve the effectiveness of chemotherapy in those disorders, according to Dr. Taratula.

Related Links:

Oregon State University
Ocean NanoTech



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
Serological Pipet Controller
PIPETBOY GENIUS
New
Hemodynamic System Monitor
OptoMonitor
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: EvoLiver is the first test to receive FDA Breakthrough Device Designation in five years in the liver cancer surveillance space (Photo courtesy of Mursla Bio)

Patient-Friendly Blood Test to Transform Liver Cancer Surveillance

Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is the fastest-growing cause of cancer-related deaths. Although clinical guidelines recommend routine surveillance for high-risk... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.