Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




siRNA Screen Identifies Potential Cystic Fibrosis Drug Target

By LabMedica International staff writers
Posted on 26 Sep 2013
A large-scale screen combining high-content live-cell microscopy and small interfering RNAs (siRNAs) in human airway epithelial cells from patients with cystic fibrosis (CF) has pinpointed a promising target for drug treatment.

Cystic fibrosis is an inherited disease caused by a mutation in the CFTR (cystic fibrosis transmembrane conductance regulator) gene that affects the body's ability to move salt and water in and out of cells. More...
CTFR codes for an ABC transporter-class ion channel, ENaC, which transports chloride and thiocyanate ions across epithelial cell membranes. Mutations of the CFTR gene disrupt the functioning of ENaC chloride ion channels in these cell membranes, leading to cystic fibrosis.

All disease-causing mutations in the CFTR gene prevent the channel from functioning properly, leading to a blockage of the movement of salt and water into and out of cells. As a result of this blockage, cells that line the passageways of the lungs, pancreas, and other organs produce abnormally thick, sticky mucus. This mucus obstructs the airways and glands, causing the characteristic signs and symptoms of cystic fibrosis. While thin mucus can be removed by cilia, thick mucus cannot be removed by cilia, so it traps bacteria that give rise to chronic infections. The only drug currently available that directly counteracts a cystic fibrosis-related mutation only works on the 3% of patients that carry one specific mutation out of the almost 2000 CFTR mutations detected so far.

Investigators at the European Molecular Biology Laboratory (Heidelberg, Germany) and their colleagues at the University of Lisbon (Portugal) sought to develop a global understanding of molecular regulators of ENaC traffic and function and to identify candidate CF drug targets. To this end, they performed a large-scale screen combining high-content live-cell microscopy and siRNAs in human airway epithelial cells.

A study published in the September 12, 2013, online edition of the journal Cell revealed that the investigators screened over 6,000 genes and identified over 1,500 candidates, evenly divided between channel inhibitors and activators.

Genes in the phosphatidylinositol pathway were enriched on the primary candidate list, and these, along with other ENaC activators, were examined further with secondary siRNA validation. Subsequent detailed investigation revealed ciliary neurotrophic factor receptor (CNTFR) as an ENaC modulator and showed that inhibition of DGKi (diacylglycerol kinase, iota), a protein involved in phosphatidylinositol biphosphate (PiP2) metabolism, downgraded ENaC activity, leading to normalization of both Na+ and fluid absorption in CF airways to non-CF levels in primary human lung cells from CF patients.

“Inhibiting DGKi seems to reverse the effects of cystic fibrosis, but not block ENaC completely,” said senior author Dr. Margarida Amaral, professor of chemistry and biochemistry at the University of Lisbon, “indeed, inhibiting DGKi reduces ENaC activity enough for cells to go back to normal, but not so much that they cause other problems, like pulmonary edema.”

Related Links:

European Molecular Biology Laboratory
University of Lisbon



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
Portable Electronic Pipette
Mini 96
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.