We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Viral siRNA Carriers Key to Powerful New Gene Silencing Technique

By LabMedica International staff writers
Posted on 25 Sep 2013
A screening technique based on viruses modified to carry discrete gene-silencing small interfering RNA (siRNA) molecules is being employed to follow the interaction between viruses and their natural host cells.

RNA interference (RNAi) has been extensively used to identify host factors affecting virus infection but requires exogenous delivery of siRNAs and the use of cell types, such as cancer cells or fibroblasts, which are easy to grow in culture. More...
Results of such studies may not explain what is happening in cells that most viruses actually attack.

An improved RNAi technique was recently described by investigators at the Mount Sinai Medical Center (New York, NY, USA). They modified an alphavirus, a class of viruses with more than 10,000 family members, so that each family carried a distinct siRNA, which inhibited a single host gene and additionally acted as a molecular "barcode.” The viruses were used to infect mice by mimicking the natural route of infection. A week after virus infection, the investigators were able to pinpoint which viruses grew faster than others did, and could read the "barcode" that indicated which genes were silenced.

Results published in the September 11, 2013, online edition of the journal Cell Host & Microbe revealed that natural selection, defined by siRNA production, permitted the identification of host restriction factors through virus enrichment during physiological infection. Monitoring virus evolution across four independent screens identified two categories of enriched siRNAs: specific effectors of the direct antiviral arsenal and host factors that indirectly dampened the overall antiviral response.

“We have a powerful system [RNAi] in place today to investigate ways in which viruses interact with cells, which has yielded fundamental insights. But has significant limitations such as cost, difficulty of use, and the problem that the cells we have to use are not in any way physiologically relevant to the virus we want to study,” said senior author Dr. Benjamin tenOever, professor of medicine at Mount Sinai Medical Center. “The new system that we developed is much less costly, can be transferable from the study of one virus to another and, best of all, allows us to use the real virus in the real environment it infects.”

“We created a virus family identical in all respects, except that each member of the family carries a different siRNA,” said Dr. tenOever. “So in this swarm of viral soldiers, each one has a very small trick up its sleeve—it can silence one thing in the host cell and because of this, we can use the cells that viruses actually infect, such as lung cells. It could be used to generate cell cultures that allow enhanced vaccine production. You could improve the capacity of a therapeutic virus to get into a particular tissue, to kill tumor cells, or to chase after metastatic cancer cells. There is potentially no end to uses of this technology.”

Related Links:

Mount Sinai Medical Center



New
Gold Member
Hematology Analyzer
Medonic M32B
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Specimen Radiography System
TrueView 200 Pro
New
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: EvoLiver is the first test to receive FDA Breakthrough Device Designation in five years in the liver cancer surveillance space (Photo courtesy of Mursla Bio)

Patient-Friendly Blood Test to Transform Liver Cancer Surveillance

Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, is the fastest-growing cause of cancer-related deaths. Although clinical guidelines recommend routine surveillance for high-risk... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.