We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Methodic Strategy Developed for 3D Tissue Engineering of Viable Organ Implants

By LabMedica International staff writers
Posted on 27 Aug 2013
Researchers in Singapore have developed a simple way to organize cells and their microenvironments in hydrogel fibers. More...
Their novel technology provides a practical template for constructing complicated structures, such as liver and fat tissues.

The investigators published their findings August 19, 2013, in the journal Nature Communications. According to the Institute of Bioengineering and Nanotechnology (IBN; Singapore) executive director Prof. Jackie Y. Ying, “Our tissue engineering approach gives researchers great control and flexibility over the arrangement of individual cell types, making it possible to engineer prevascularized tissue constructs easily. This innovation brings us a step closer toward developing viable tissue or organ replacements.”

IBN team leader and lead research scientist, Dr. Andrew Wan, elaborated, “Critical to the success of an implant is its ability to rapidly integrate with the patient’s circulatory system. This is essential for the survival of cells within the implant, as it would ensure timely access to oxygen and essential nutrients, as well as the removal of metabolic waste products. Integration would also facilitate signaling between the cells and blood vessels, which is important for tissue development.”

Tissues designed with preformed vascular networks are known to foster rapid vascular integration with the host. Generally, prevascularization has been achieved by seeding or encapsulating endothelial cells, which line the interior surfaces of blood vessels, with other cell types. In many of these approaches, the eventual distribution of vessels within a thick structure is based on in vitro cellular infiltration and self-organization of the cell mixture. These are slow processes, frequently leading to a nonuniform network of vessels within the tissue. As vascular self-assembly requires a large concentration of endothelial cells, this technique also greatly restricts the number of other cells that may be co-cultured.

Alternatively, scientists have attempted to direct the distribution of newly formed vessels via three-dimensional (3D) co-patterning of endothelial cells with other cell types in a hydrogel. This approach allows large concentrations of endothelial cells to be placed in specific areas within the tissue, leaving the rest of the construct available for other cell types. The hydrogel also acts as a reservoir of nutrients for the encapsulated cells. However, co-patterning multiple cell types within a hydrogel is not easy. Traditional techniques, such as micromolding and organ printing, are limited by large volumes of cell suspension, slow cell assembly, complicated multistep processes, and costly instruments. These factors also make it difficult to scale up the production of implantable 3D cell-patterned constructs. Up to now, these strategies have not been able to achieve vascularization and mass transport through dense engineered tissues.

To overcome these hurdles, IBN researchers have used interfacial polyelectrolyte complexation (IPC) fiber assembly, a unique cell patterning technology patented by IBN, to generate cell-laden hydrogel fibers under aqueous conditions at room temperature. In contrast to other technology, IBN’s unique technique allows researchers to incorporate different cell types separately into different fibers, and these cell-laden fibers may then be assembled into more complex constructs with hierarchical tissue structures. Furthermore, IBN researchers are able to customize the microenvironment for each cell type for enhanced functionality by integrating the appropriate factors, e.g., proteins, into the fibers. Using IPC fiber assembly, the researchers have engineered an endothelial vessel network, as well as liver tissue constructs and cell-patterned fat, which have successfully integrated with the host circulatory system in a mouse model and produced vascularized tissues.

The IBN researchers are now working on applying and further developing their technology toward engineering functional tissues and clinical applications.

Related Links:
Institute of Bioengineering and Nanotechnology



New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: CellLENS enables the potential precision therapy strategies against specific immune cell populations in the tissue environment (Photo courtesy of MIT)

New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy

To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.