We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Antioxidant Nanoparticles Neutralize Superoxide and Restore Blood Flow Following Traumatic Brain Injury

By LabMedica International staff writers
Posted on 05 Sep 2012
A novel class of potent antioxidant nanoparticles restores brain blood flow and normalizes superoxide and nitric oxide levels in the brains of a rat model of traumatic brain injury (TBI).

Cerebrovascular dysfunction, manifested by reduction in cerebral blood flow (CBF), is a key factor that worsens outcome after TBI, most notably under conditions of hypotension. More...
In a traumatic brain injury, damaged cells release an excessive amount of the reactive oxygen species (ROS) superoxide (SO) into the blood. Healthy organisms balance SO with increased production of the neutralizing enzyme superoxide dismutase (SOD), but even mild brain trauma can release superoxides at levels that overwhelm the brain’s capacity for SOD synthesis.

Based on data accumulated in studies designed to enhance cancer treatment via nanoparticle-based drug delivery, investigators at Rice University (Houston, TX, USA) decided to test their potential for treating TBI. These poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs) represent a new class of nontoxic, antioxidant carbon-based nanoparticles.

PEG-HCCs were administered to a mild TBI/hypotension/resuscitation rat model during resuscitation, which is a clinically relevant time point. Results published in the August 6, 2012, online edition of the journal ACS Nano revealed that the particles rapidly restored CBF. Along with restoration of CBF, there was a concomitant normalization of superoxide and nitric oxide levels.

“Superoxide is the most deleterious of the reactive oxygen species, as it is the progenitor of many of the others,” said senior author Dr. James M. Tour, professor of chemistry, mechanical engineering, and materials science at Rice University. “If you do not deal with SO, it forms peroxynitrite and hydrogen peroxide. SO is the upstream precursor to many of the downstream problems. While an SOD enzyme can alter only one superoxide molecule at a time, a single PEG-HCC about the size of a large protein at two to three nanometers wide and 30 to 40 nanometers long can quench hundreds or thousands. This is an occasion where a nano-sized package is doing something that no small drug or protein could do, underscoring the efficacy of active nano-based drugs.”

“This might be a first line of defense against reactive oxygen species (ROS) that are always overstimulated during a medical trauma, whether that be to an accident victim or an injured soldier,” said Dr. Tour. “They are certainly exacerbated when there is trauma with massive blood loss.”

Related Links:
Rice University




New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Clinical Chemistry System
P780
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The VeraBIND Tau assay is a novel blood test that identifies the presence of active tau pathology (Photo courtesy of 123RF)

First Blood-Based Test Measures Key Alzheimer's Biomarker in Asymptomatic and Symptomatic Individuals

Alzheimer’s disease (AD), the sixth leading cause of death in the United States, affects an estimated 7.2 million Americans aged 65 or older. Current diagnostic methods for AD are often invasive, expensive,... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.