We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Simulated Blood Flow Device Demonstrates How Bloodstream Infections Begin

By LabMedica International staff writers
Posted on 02 Sep 2012
A computer model of how bacteria traveling through the bloodstream clumped together may explain how bloodstream infections resist antibiotics.

A team of University of Michigan (Anne Arbor, MI, USA) scientists demonstrated that bacteria can form antibiotic-resistant clumps in a short time, even in a flowing liquid such as blood. More...
They built a device that closely simulates the turbulence and forces of blood flow, and added a strain of bacteria that is a common cause of bloodstream infections. Tiny aggregates, or clumps, of 10 to 20 bacteria formed in the flowing liquid in just two hours––about the same time, it takes human patients to develop infections.

The bioreactor used to produce the results is called a Taylor-Couette cell, and uses concentric cylinders, one of which is turned by a motor. Liquid growth medium was added to the reactor and then carefully controlled rotation produced eddies in the liquid that are similar to those of the blood. They then added Klebsiella pneumoniae bacteria, one of the most common sources of bloodstream infection. They tested two antibiotics that doctors often prescribe for sepsis: ceftriaxone and ciprofloxacin. Neither was effective at killing the clumped bacteria.

The clumps only formed when certain sticky carbohydrate molecules were present on the surface of the bacteria. The clumps persisted even when two different types of antibiotics were added suggesting that sticking together protects the floating bacteria from the drugs’ effects.
Mathematical models of the fluid dynamics of the bloodstream were created, and the conditions needed to promote bacterial growth. The models were tested using different types of containers and methods to simulate bloodstream conditions.

The clumps of bacteria were injected into mice and they stayed intact even after making many trips through the bloodstream. The clumps, about the size of a red blood cell, appeared to survive the filtering that normally takes place in the smallest blood vessels and defends the body against invaders.

The studies were described in the August 15, 2012, Journal of Infectious Diseases.

“This work demonstrates that if you let bacterial pathogens grow in fluid dynamic environments like they encounter in the bloodstream, they start to take on features that you see in patients,” said John Younger, MD, MS, professor in the department of emergency medicine at the U-M Medical School (UMMS; Anne Arbor, MI, USA) senior author of the new paper, and leader of a team of physicians, engineers, and mathematicians who have studied the origins of bloodstream infections for years. “The thing is to grow them in physical conditions that mechanically ‘feel’ like the motion of flowing blood.”

The chance of severe infection increases when someone is exposed to a source of infection, such as a central line catheter, that stays in place for days or weeks, giving tens of thousands of bacteria a chance to get into the bloodstream over time. Sepsis, which kills tens of thousands of people a year, can result when an exaggerated inflammatory response to a bloodstream infection triggers organ damage and failure.

Related Links:
University of Michigan
U-M Medical School


New
Gold Member
Hematology Analyzer
Medonic M32B
Collection and Transport System
PurSafe Plus®
New
Hemodynamic System Monitor
OptoMonitor
New
Gold Member
Hematology System
Medonic M16C
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.