We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Simulated Blood Flow Device Demonstrates How Bloodstream Infections Begin

By LabMedica International staff writers
Posted on 02 Sep 2012
A computer model of how bacteria traveling through the bloodstream clumped together may explain how bloodstream infections resist antibiotics.

A team of University of Michigan (Anne Arbor, MI, USA) scientists demonstrated that bacteria can form antibiotic-resistant clumps in a short time, even in a flowing liquid such as blood. More...
They built a device that closely simulates the turbulence and forces of blood flow, and added a strain of bacteria that is a common cause of bloodstream infections. Tiny aggregates, or clumps, of 10 to 20 bacteria formed in the flowing liquid in just two hours––about the same time, it takes human patients to develop infections.

The bioreactor used to produce the results is called a Taylor-Couette cell, and uses concentric cylinders, one of which is turned by a motor. Liquid growth medium was added to the reactor and then carefully controlled rotation produced eddies in the liquid that are similar to those of the blood. They then added Klebsiella pneumoniae bacteria, one of the most common sources of bloodstream infection. They tested two antibiotics that doctors often prescribe for sepsis: ceftriaxone and ciprofloxacin. Neither was effective at killing the clumped bacteria.

The clumps only formed when certain sticky carbohydrate molecules were present on the surface of the bacteria. The clumps persisted even when two different types of antibiotics were added suggesting that sticking together protects the floating bacteria from the drugs’ effects.
Mathematical models of the fluid dynamics of the bloodstream were created, and the conditions needed to promote bacterial growth. The models were tested using different types of containers and methods to simulate bloodstream conditions.

The clumps of bacteria were injected into mice and they stayed intact even after making many trips through the bloodstream. The clumps, about the size of a red blood cell, appeared to survive the filtering that normally takes place in the smallest blood vessels and defends the body against invaders.

The studies were described in the August 15, 2012, Journal of Infectious Diseases.

“This work demonstrates that if you let bacterial pathogens grow in fluid dynamic environments like they encounter in the bloodstream, they start to take on features that you see in patients,” said John Younger, MD, MS, professor in the department of emergency medicine at the U-M Medical School (UMMS; Anne Arbor, MI, USA) senior author of the new paper, and leader of a team of physicians, engineers, and mathematicians who have studied the origins of bloodstream infections for years. “The thing is to grow them in physical conditions that mechanically ‘feel’ like the motion of flowing blood.”

The chance of severe infection increases when someone is exposed to a source of infection, such as a central line catheter, that stays in place for days or weeks, giving tens of thousands of bacteria a chance to get into the bloodstream over time. Sepsis, which kills tens of thousands of people a year, can result when an exaggerated inflammatory response to a bloodstream infection triggers organ damage and failure.

Related Links:
University of Michigan
U-M Medical School


New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Researcher Fusun Can (at left) is developing a test for detecting both resistance and virulence in Klebsiella pneumoniae (Photo courtesy of Koç University)

Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae

Antibiotic resistance is a steadily escalating threat to global healthcare, making common infections harder to treat and increasing the risk of severe complications. One of the most concerning pathogens... Read more

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: Determining EG spiked into medicinal syrups: Zoomed-in images of the pads on the strips are shown. The red boxes show where the blue color on the pad could be seen when visually observed (Arman, B.Y., Legge, I., Walsby-Tickle, J. et al. https://doi.org/10.1038/s41598-025-26670-1)

Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups

Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.