Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Innovative Technique Uses RNA Interference to Block Inflammation

By LabMedica International staff writers
Posted on 20 Oct 2011
Interfering with cell recruitment has been shown to reduce damaging inflammation in animal models of several disorders.

Massachusetts General Hospital (MGH; Boston, MA, USA) researchers--along with collaborators from Massachusetts Institute of Technology (MIT; Cambridge, MA, USA) and Alnylam Pharmaceuticals (Cambridge, MA, USA)--have found a way to block, in an animal model, the damaging inflammation that contributes to many disorders. More...
In their report, published online October 2011 in the journal Nature Biotechnology, the investigators described utilizing small interfering RNA technology to silence the biochemical signals that attract a specific group of inflammatory cells to regions of tissue damage.

“The white blood cells known as monocytes play a critical role in the early stages of the immune response,” said Matthias Nahrendorf, MD, PhD, of the MGH Center for Systems Biology, the article’s senior author. “We now know there are two subsets of monocytes--an inflammatory subset that defends against pathogens and a reparative subset that supports healing. But if the inflammatory response is excessive, it can block the healing process and exacerbate conditions such heart disease and cancer.”

Cells damaged by injury or disease release cytokines that attract immune cells to the site of the damage. Inflammatory monocytes are guided to sites of tissue injury by a receptor protein called CCR2 (chemokine [C-C motif)] receptor 2), and the MGH-led team devised an approach targeting that molecule to block the inflammatory process but not the action of the reparative monocytes.

Small interfering RNA (siRNA) technology prevents production of specific proteins by binding to associated messenger RNA molecules and preventing their translation. Because the technique requires extreme precision in developing the right siRNA molecule and delivering it to the correct cellular location, the MGH team collaborated with Alnylam scientists who are experts in RNA-interference-based therapeutics and with MIT investigators Robert Langer, ScD, and Daniel Anderson, PhD, who have developed a nanoparticle-based system for delivering molecules to specific cellular compartments.

To make certain that their siRNA preparation targeted the right monocytes, the investigators first validated that its use reduced levels of CCR2 in monocytes and increased levels of the fragments produced when siRNA binds to its target. They then showed that monocytes from mice treated with the siRNA preparation were unable to migrate towards CCR2’s typical molecular target. Experiments in animal models of several important diseases showed that the siRNA preparation reduced the amount of cardiac muscle damaged by a heart attack, reduced the size and the number of inflammatory cells in atherosclerotic plaques and in lymphomas, and improved the survival of transplanted pancreatic islets.

“These inflammatory monocytes are involved in almost every major disease,” Dr. Nahrendorf explained. “Anti-inflammatory drugs currently on the market hit every inflammatory cell in the body, which can produce unwanted side effects. This new siRNA treatment doesn’t affect inflammatory cells that don’t rely on the CCCR2 receptor. That makes a big difference.” Dr. Nahrendorf is an assistant professor of radiology at Harvard Medical School (Boston, MA, USA).

Related Links:
Massachusetts General Hospital
Massachusetts Institute of Technology
Alnylam Pharmaceuticals



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: Prof. Nicholas Schwab has found a biomarker that can predict treatment outcome of glatirameracetate in MS patients (Photo courtesy of Uni MS - M. Ibrahim)

Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients

Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
Image: (A) Normal skin and (B) possible pathology in ALS skin (Photo courtesy of Biomolecules and Biomedicine (2025) DOI: 10.17305/bb.2025.12100)

Skin-Based Biomarkers to Enable Early Diagnosis of Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that damages motor neurons in the brain and spinal cord, causing muscle weakness, paralysis, and death within three to five... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.