Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Molecular Pathway That Enables Movement of Metastatic Cancer Cells Identified

By LabMedica International staff writers
Posted on 16 Oct 2011
Cancer researchers have identified a molecular pathway that seems to be responsible for the ability of metastatic tumor cells to change shape and travel.

Investigators at the University of Michigan (Ann Arbor, USA) worked with breast cancer cells growing in culture. More...
Previous studies had shown that aggressively metastatic breast cancer cells usually overexpressed the RhoC (aplysia ras-related homolog 9) gene. In this study, they searched for the molecular trigger for RhoC expression.

They reported in the August 23, 2011, online edition of the journal Cancer Research that the protein p38gamma was directly linked to RhoC activation. P38gamma is one member of the p38 MAPK (p38 mitogen-activated protein kinase) class of mitogen-activated protein kinases. These enzymes are responsive to stress stimuli, such as cytokines, ultraviolet irradiation, heat shock, and osmotic shock, and are involved in cell differentiation and apoptosis.

Results from experiments with breast cancer cell cultures revealed that inactivation of p38gamma caused cells to flatten out and shift from fast motion to ineffective movement. Clinical relevance indicated that elevated expression of p38gamma was associated with lower overall survival of breast cancer patients. The critical role of p38gamma was further emphasized by data generated from a mathematical model that described how various molecules contributed to cell movement.

“Normal motion is commonly seen in aggressive cancers, which is why it is very important to understand what the key switches are for this motion,” said senior author Dr. Sofia Merajver, professor of internal medicine at the University of Michigan. “Cell movement is very difficult to observe, which is why mathematical modeling in oncology is valuable. This gives us a more complete understanding of how aggressive breast cancer cells move and the influence of p38gamma in particular on modifying this motion.”

“We do have targeted therapies in the clinic, but the total burden of disease that they ameliorate is still relatively minimal. The reasons may not necessarily be that they are not good drugs, but simply that we do not understand how they work, because we do not understand the biology in sufficient detail. That’s why studies like this are so important in advancing drug development,” said Dr. Merajver.

Related Links:
University of Michigan



Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Urine Chemistry Control
Dropper Urine Chemistry Control
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.