Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Researchers Track Changes in Blood Protein Levels During Breast Cancer Development

By LabMedica International staff writers
Posted on 18 Aug 2011
Cancer researchers have identified a set of proteins in the blood that change in abundance during tumor development, a process that begins long before the cancer is clinically detectable.

Investigators at the Fred Hutchinson Cancer Research Center (Seattle, WA, USA) worked with the conditional transgenic neu-induced mouse model of breast cancer to determine the extent and source of changes in the plasma proteome at predetermined stages of tumor development. More...
The neu is an activated rat homologue of the human epidermal growth factor receptor 2 (ErbB2) gene. ErbB2 is a receptor tyrosine kinase amplified and overexpressed in more than 25% of human breast cancers, and signaling from this oncogene is a central driver in breast cancer development.

When induced with doxycycline, the mice population synchronously develops invasive breast tumors that recapitulate the morphologic, pathologic, and molecular features of ErbB2-positive human breast cancer. In contrast, doxycycline withdrawal results in transgene de-induction and tumor regression, mimicking responses of tumors to targeted therapy.

The investigators used mass spectrometry to analyze blood proteins at different stages of cancer development in the mouse model system. They reported in the August 1, 2011, online edition of the journal Cancer Research that approximately 500 different proteins were detected, and that up to a third of these changed in abundance; the number increased with cancer growth and decreased with tumor regression.

“We found a treasure trove of proteins that are involved in a variety of mechanisms related to cancer development, from the formation of blood vessels that feed tumors to signatures of early cancer spread, or metastasis,” said senior author Dr. Christopher J. Kemp, a researcher at the Fred Hutchinson Cancer Research Center. “The overall surprising thing we found was the degree to which the host responds to cancer early in the course of disease progression, and the extent of that response. While a mouse - or presumably a human - with early-stage cancer may appear normal, our study shows that there are many changes occurring long before the disease can be detected clinically. This gives us hope that we should be able to identify those changes and use them as early detection tools with the ultimate goal of more effective intervention.”

Related Links:

Fred Hutchinson Cancer Research Center



Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.