We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App

Imaging Technique Shows Complex Microbial Interactions

By LabMedica International staff writers
Posted on 26 May 2011
Print article
Researchers using a new form of imaging mass spectrometry were able to visualize multiplex microbial interactions.

Microbes must be able to communicate, to be able to interact with its environment and with others in order to thrive. This cellular chatter comes in the form of signaling molecules and exchanged metabolites that can have effects far larger than the organism itself.

Most of what is known about how microbes communicate with each other is the result of indirect observation and measurements. Until now, there has been no general or informative technique for observing the manifold metabolic exchange and signaling interactions between microbes, their hosts, and environments.

In a study published May 16, 2011, in the journal Angewandte Chemie, researchers from the University of California, San Diego (UCSD; USA) and the Scripps Institute of Oceanography (La Jolla, CA, USA) reported the mass spectrometry approach clearly visualizes multiplex microbial interactions. "Being able to better see and understand the metabolic interplay between microbial communities and their surrounding biology means we can better detect and characterize the molecules involved and perhaps discover new and better therapeutic and commercially viable compounds," said Pieter C. Dorrestein, PhD, associate professor at the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences and the article's senior author.

Dr. Dorrestein and colleagues used matrix-assisted laser desorption ionization (MALDI) mass spectrometry, a comparatively new application that creates two-dimensional, spatial images of microbes and biomolecules--among them proteins, peptides, sugars--too fragile to endure other mass spectrometry techniques.

As their first subject, the scientists gathered marine microbial assemblages scraped off the surfaces of a barnacle attached to the Scripps Pier. The resulting images, generated after careful preparation, offered new insights. "One of the things we see that we haven't with other techniques is that the dialog between microbes is multiplexed," said Dr. Dorrestein. "There are many conversations going on at the same time, many changes happening at the same time. We see competition for resources such as iron, but also that microbes secrete molecules that alter the phenotypes of neighboring organisms."

Dr. Dorrestein noted that the ability to better visualize the immensely complex environment of microbial communication is changing the ways scientists examine how two or more microbes are studied and ultimately engineered. "Rather than enumerating which microbes are present, as in many metagenomic efforts, our current approach is anticipated to address the why, when, and how questions of microbial interactions instead of just the who," Dr. Dorrestein concluded.

Related Links:

University of California, San Diego
Scripps Institute of Oceanography

Gold Supplier
COVID-19 Antigen Self-Test
Panbio COVID-19 Antigen Self-Test
STI Test
Rheonix STI TriPlex Assay
TSI Stimulating Assay
Thyretain TSI Stimulating Reporter BioAssay
Automated Hematology Workstation

Print article
IIR Middle East


Molecular Diagnostics

view channel
Image: A cost-effective approach enables early-cancer detection from cell-free DNA in blood samples (Photo courtesy of UCLA)

Single Blood Test Enables Early Detection of Multiple Cancer Types

Early detection remains key to successfully treating many cancers, and early detection via cell-free DNA (cfDNA) circulating in the bloodstream – the so-called “liquid biopsy” – has become a research focal point.... Read more


view channel
Image: OneDraw Blood Collection Device significantly reduces obstacles for drawing blood (Photo courtesy of Drawbridge Health)

Near Pain-Free Blood Collection Technology Enables High-Quality Testing

Blood tests help doctors diagnose diseases and conditions such as cancer, diabetes, anemia, and coronary heart disease, as well as evaluate organ functionality. They can also be used to identify disease... Read more


view channel
Image: The global infectious disease IVD market is expected to hit USD 57 billion by 2030 (Photo courtesy of Pexels)

Global Infectious Disease IVD Market Dominated by Molecular Diagnostics Technology

The global infectious disease in vitro diagnostics (IVD) market stood at USD 113.7 billion in 2021 and is expected to grow at a CAGR of -7.41% from 2022 to 2030 to hit around USD 56.89 billion by 2030,... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.