We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Imaging Technique Shows Complex Microbial Interactions

By LabMedica International staff writers
Posted on 26 May 2011
Print article
Researchers using a new form of imaging mass spectrometry were able to visualize multiplex microbial interactions.

Microbes must be able to communicate, to be able to interact with its environment and with others in order to thrive. This cellular chatter comes in the form of signaling molecules and exchanged metabolites that can have effects far larger than the organism itself.

Most of what is known about how microbes communicate with each other is the result of indirect observation and measurements. Until now, there has been no general or informative technique for observing the manifold metabolic exchange and signaling interactions between microbes, their hosts, and environments.

In a study published May 16, 2011, in the journal Angewandte Chemie, researchers from the University of California, San Diego (UCSD; USA) and the Scripps Institute of Oceanography (La Jolla, CA, USA) reported the mass spectrometry approach clearly visualizes multiplex microbial interactions. "Being able to better see and understand the metabolic interplay between microbial communities and their surrounding biology means we can better detect and characterize the molecules involved and perhaps discover new and better therapeutic and commercially viable compounds," said Pieter C. Dorrestein, PhD, associate professor at the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences and the article's senior author.

Dr. Dorrestein and colleagues used matrix-assisted laser desorption ionization (MALDI) mass spectrometry, a comparatively new application that creates two-dimensional, spatial images of microbes and biomolecules--among them proteins, peptides, sugars--too fragile to endure other mass spectrometry techniques.

As their first subject, the scientists gathered marine microbial assemblages scraped off the surfaces of a barnacle attached to the Scripps Pier. The resulting images, generated after careful preparation, offered new insights. "One of the things we see that we haven't with other techniques is that the dialog between microbes is multiplexed," said Dr. Dorrestein. "There are many conversations going on at the same time, many changes happening at the same time. We see competition for resources such as iron, but also that microbes secrete molecules that alter the phenotypes of neighboring organisms."

Dr. Dorrestein noted that the ability to better visualize the immensely complex environment of microbial communication is changing the ways scientists examine how two or more microbes are studied and ultimately engineered. "Rather than enumerating which microbes are present, as in many metagenomic efforts, our current approach is anticipated to address the why, when, and how questions of microbial interactions instead of just the who," Dr. Dorrestein concluded.

Related Links:

University of California, San Diego
Scripps Institute of Oceanography


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The revolutionary autonomous blood draw technology is witnessing growing demands (Photo courtesy of Vitestro)

Robotic Blood Drawing Device to Revolutionize Sample Collection for Diagnostic Testing

Blood drawing is performed billions of times each year worldwide, playing a critical role in diagnostic procedures. Despite its importance, clinical laboratories are dealing with significant staff shortages,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.