We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Melanoma Test Offers Reassurance of Low Risk of Cancer Spread

By LabMedica International staff writers
Posted on 25 Jan 2022
Cutaneous melanoma is an aggressive form of skin cancer with an increasing worldwide incidence, particularly in the younger population. More...
Although treatment for patients with metastatic melanoma has improved remarkably in the last decade, principally with targeted therapies and immune checkpoint modulators, there are still no consistently beneficial treatments for patients with metastatic disease.

AMBRA1 is a scaffold protein with key roles in autophagy, cell survival and proliferation. AMBRA1 promotes autophagy through initiation of autophagosome formation, and mitophagy-mediated clearance of damaged mitochondria. Melanoma cells can influence the tumor microenvironment through secretion of growth factors, including transforming growth factors α and β (TGF-α, TGF-β).

Clinical Scientists at Newcastle University (Newcastle, UK) and AMLo Biosciences Limited (Newcastle upon Tyne, UK) and their colleagues evaluated the potential contribution of melanoma paracrine transforming growth factor (TGF)-β signaling to the loss of AMBRA1 in the epidermis overlying the primary tumor and disruption of epidermal integrity. Immunohistochemistry was used to analyze AMBRA1 and TGF-β2 in a cohort of 109 AJCC all-stage melanomas, and TGF-β2 and claudin-1 in a cohort of 30 or 42 AJCC stage I melanomas, respectively, with known AMBRA1 and loricrin (AMLo) expression. Evidence of pre-ulceration was analyzed in a cohort of 42 melanomas, with TGF-β2 signaling evaluated in primary keratinocytes.

The investigators performed semiquantitative immunohistochemistry for or AMBRA1, TGF-β2, TGF-β3, claudin-1 or AMLo expression. Claudin-1 expression was quantified by H-score using Aperio ImageScope (Leica Biosystems, Nussloch Germany). Western blotting was generated and visualized using enhanced chemiluminescence (Bio-Rad, Watford, UK). Total RNA was isolated from cell pellets and reverse transcribed using an AMV Reverse Transcriptase kit (Promega, Madison, WI, USA) or High Capacity Reverse Transcription Kit (Thermo Fisher Scientific, Waltham MA, USA).

The scientists reported that increased tumoral TGF-β2 was significantly associated with loss of peritumoral AMBRA1, ulceration, AMLo high-risk status and metastasis. TGF-β2 treatment of keratinocytes resulted in downregulation of AMBRA1, loricrin and claudin-1, while knockdown of AMBRA1 was associated with decreased expression of claudin-1 and increased proliferation of keratinocytes. Importantly, they showed loss of AMBRA1 in the peritumoral epidermis was associated with decreased claudin-1 expression, parakeratosis and cleft formation in the dermoepidermal junction.

Penny E. Lovat, PhD, Professor of Cellular Dermatology and senior author of the study, said, “Like mortar and bricks holding together a wall, AMBRA1, Loricrin and Claudin 1 are all proteins key to maintaining the integrity of the upper layer of the skin. When these proteins are lost gaps develop, like the mortar crumbling away in the wall. This allows the tumor to spread and ultimately ulcerate which we know is a process associated with higher risk tumors. Our new understanding of this biological mechanism underpins the test we have available.”

The authors concluded that their data suggested a paracrine mechanism whereby melanoma secretion of TGF-β2 causes peritumoral loss of AMBRA1 and reduced epidermal integrity facilitating erosion of the epidermis and tumor ulceration. Targeting TGF-β2 signaling may therefore represent a novel adjuvant treatment strategy for high-risk early-stage tumors with loss of epidermal AMBRA1. The study was published on January 13, 2022 in the British Journal of Dermatology.

Related Links:
Newcastle University
AMLo Biosciences Limited
Leica Biosystems
Bio-Rad
Promega
Thermo Fisher Scientific



New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The new analysis of blood samples links specific protein patterns to five- and ten-year mortality risk (Photo courtesy of Adobe Stock)

Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention

Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.