We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Experimental Drug Blocks Critical Lung Cancer DNA Repair Enzyme

By LabMedica International staff writers
Posted on 02 Jun 2015
A low molecular weight drug—effective on its own and in combination with radiation therapy—has been developed that interferes specifically with the cell cycle of lung cancer cells.

The drug, RK-33, was developed by investigators at Johns Hopkins University (Baltimore, MD, USA) to block the activity of the RNA helicase, DDX3 (DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked), which is overexpressed in many cancer types including lung cancer and is associated with lower survival in lung cancer patients.

The main function of helicases is to unpackage an organism's genes. More...
They are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two annealed nucleic acid strands (i.e., DNA, RNA, or RNA-DNA hybrid) using energy derived from ATP hydrolysis. There are many helicases due to the great variety of processes in which strand separation must be catalyzed. The human genome codes for 95 non-redundant helicases: 64 RNA helicases and 31 DNA helicases.

DDX3 is a member of the large DEAD-box protein family, which is defined by the presence of the conserved Asp-Glu-Ala-Asp (DEAD) motif, and has ATP-dependent RNA helicase activity. This protein has been reported to display a high level of RNA-independent ATPase activity, and unlike most DEAD-box helicases, the ATPase activity is thought to be stimulated by both RNA and DNA. This protein has multiple conserved domains and is thought to play roles in both the nucleus and cytoplasm. Overexpression of this gene has been implicated in tumor development.

The investigators synthesized the low molecular weight compound RK-33, which was designed to inhibit DDX3 by binding to the nucleotide-binding site within the enzyme. Results published in the May 2015 issue of the journal EMBO Molecular Medicine revealed that RK-33 binding inhibited DDX3's DNA repair function, which caused tumor cells to die and increased the efficacy of radiation therapy. RK-33 in combination with radiation induced tumor regression in multiple mouse models of lung cancer without causing damage to noncancerous tissues.

“We can lower the dose of radiation significantly but actually get more “bang for your buck” by pretreating lung cancer with RK-33,” said senior author Dr. Venu Raman, associate professor of radiology, radiological science, and oncology at Johns Hopkins University. “DDX3 is an extremely novel target associated with many cancer types and perturbing its function with a small molecule will enhance efficacy for cancer treatment. It is hard to find a magic bullet for cancer treatment, but because RK-33 is nontoxic and is a phenomenal radiosensitizer, there are so many opportunities.”

Related Links:

Johns Hopkins University



Gold Member
Veterinary Hematology Analyzer
Exigo H400
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Varicella Zoster Virus Assay
LIAISON VZV Assay Panel (IgG HT, IgM)
New
Biochemistry Analyzer
Chemi+ 8100
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: Ear wax could be a possible screening medium for Parkinson’s disease (Photo courtesy of 123RF)

Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules

Current tests for Parkinson’s disease (PD) rely heavily on clinical scales and neuroimaging, which are often subjective, expensive, and ill-suited for routine screening. Since most treatments only slow... Read more

Molecular Diagnostics

view channel
Image: Capsule sponge opened to reveal the sponge (Photo courtesy of StillVision)

Capsule Sponge Test Could Replace Endoscopies for Monitoring Esophageal Cancer Risk

Esophageal cancer remains a challenging disease to treat, with fewer than 20% of patients surviving beyond five years of diagnosis—a statistic that has remained largely unchanged for decades.... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The new tool shines a light on elusive genomic patterns (Photo courtesy of Adobe Stock)

Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance

Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.