Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Experimental Drug Blocks Critical Lung Cancer DNA Repair Enzyme

By LabMedica International staff writers
Posted on 02 Jun 2015
A low molecular weight drug—effective on its own and in combination with radiation therapy—has been developed that interferes specifically with the cell cycle of lung cancer cells.

The drug, RK-33, was developed by investigators at Johns Hopkins University (Baltimore, MD, USA) to block the activity of the RNA helicase, DDX3 (DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked), which is overexpressed in many cancer types including lung cancer and is associated with lower survival in lung cancer patients.

The main function of helicases is to unpackage an organism's genes. More...
They are motor proteins that move directionally along a nucleic acid phosphodiester backbone, separating two annealed nucleic acid strands (i.e., DNA, RNA, or RNA-DNA hybrid) using energy derived from ATP hydrolysis. There are many helicases due to the great variety of processes in which strand separation must be catalyzed. The human genome codes for 95 non-redundant helicases: 64 RNA helicases and 31 DNA helicases.

DDX3 is a member of the large DEAD-box protein family, which is defined by the presence of the conserved Asp-Glu-Ala-Asp (DEAD) motif, and has ATP-dependent RNA helicase activity. This protein has been reported to display a high level of RNA-independent ATPase activity, and unlike most DEAD-box helicases, the ATPase activity is thought to be stimulated by both RNA and DNA. This protein has multiple conserved domains and is thought to play roles in both the nucleus and cytoplasm. Overexpression of this gene has been implicated in tumor development.

The investigators synthesized the low molecular weight compound RK-33, which was designed to inhibit DDX3 by binding to the nucleotide-binding site within the enzyme. Results published in the May 2015 issue of the journal EMBO Molecular Medicine revealed that RK-33 binding inhibited DDX3's DNA repair function, which caused tumor cells to die and increased the efficacy of radiation therapy. RK-33 in combination with radiation induced tumor regression in multiple mouse models of lung cancer without causing damage to noncancerous tissues.

“We can lower the dose of radiation significantly but actually get more “bang for your buck” by pretreating lung cancer with RK-33,” said senior author Dr. Venu Raman, associate professor of radiology, radiological science, and oncology at Johns Hopkins University. “DDX3 is an extremely novel target associated with many cancer types and perturbing its function with a small molecule will enhance efficacy for cancer treatment. It is hard to find a magic bullet for cancer treatment, but because RK-33 is nontoxic and is a phenomenal radiosensitizer, there are so many opportunities.”

Related Links:

Johns Hopkins University



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Collection and Transport System
PurSafe Plus®
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.