Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Portable DNA Sequencer Functions Well in Evaluation Trials

By LabMedica International staff writers
Posted on 05 Apr 2015
Researchers have demonstrated the ability of a handheld nanopore sequencer to accurately identify and differentiate bacterial and viral samples.

The Oxford Nanopore Technologies (Oxford, United Kingdom) MinION nanopore sequencer was recently released to a select group of investigators for evaluation using a variety of sequencing applications. More...


MinION rapidly determines the sequence of subject DNA through the application of protein nanopore technology. The method is based on a protein channel—only a few nanometers in diameter—through which a single strand of DNA can pass. As the DNA strand passes through the nanopore, it generates a series of characteristic electrical signatures, from which nucleotide bases can be identified, and the sequence of the strand determined. The instrument is powered and operated by a laptop computer via a USB connection.

Some teams of evaluators tested the ability of the MinION to act as a whole genome sequencer and demonstrated that nanopore sequencing has tremendous potential utility. However, the current nanopore technology still has limitations with respect to error-rate, and this is problematic when attempting to assemble whole genomes without secondary rounds of sequencing to correct errors. In the current study, investigators at Edgewood Chemical Biological Center (Edgewood, MD, USA) and Signature Science, LLC (Austin, TX, USA) tested the ability of the MinION to accurately identify and differentiate bacterial and viral samples via directed sequencing of characteristic genes.

They reported in the March 26, 2015, edition of the journal GigaScience that by using a six hour sequencing run time, sufficient data were generated to identify an E. coli sample down to the species level from 16S rDNA amplicons. Three poxviruses (cowpox, vaccinia-MVA, and vaccinia-Lister) were identified and differentiated down to the strain level, despite over 98% identity between the vaccinia strains. The ability to differentiate strains by amplicon sequencing on the MinION was accomplished despite an observed per-base error rate of approximately 30%.

First author Dr. Andrew Kilianski, a researcher at Edgewood Chemical Biological Center, said, "Our findings are important because we have for the first time communicated to the community that this technology can be incredibly useful in its current state. Being able to accurately identify and characterize strains of viruses and bacteria using a mobile platform is attractive to anyone collecting biological samples in the field. And we expect that as the technology improves, the sequencing will generally become cheaper, faster, and more accurate and could have further clinical applications."

Related Links:

Oxford Nanopore Technologies
Edgewood Chemical Biological Center 
Signature Science, LLC 



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Rapid Molecular Testing Device
FlashDetect Flash10
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.