We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




A Novel Cellular Thermal Shift Assay Monitors Intracellular Drug Binding

By LabMedica International staff writers
Posted on 17 Jul 2013
A team of Swedish biochemists and biophysicists has shown that an advanced thermal shift assay could be exploited by drug developers as a tool for the validation and optimization of correctly targeted drug binding.

The efficacy of drug treatment is dependent on the compound binding to the correct target molecule. More...
However, optimization of target engagement by drugs within cells is a challenging task, since no methods currently exist for intracellular monitoring of drug binding.

In a potential breakthrough in this field, investigators at the Karolinska Institutet (Stockholm, Sweden) have developed a method for evaluating drug binding to target proteins in cells and tissue samples. Their cellular thermal shift assay (CETSA) was based on the biophysical principle of ligand-induced thermal stabilization of target proteins. In other words, drug binding renders the target protein more resistant to thermal denaturation.

This type of thermal shift assay is a way to monitor the thermal stability of proteins and investigate factors affecting this stability. The technique is used in high-throughput mode to screen optimal buffer conditions, ligands, cofactors, and drugs for their influence on proteins. Two methods to monitor protein denaturation are available: a differential scanning fluorimetry (DSF) method and a differential static light scattering method (DSLS). Changes in the thermal stability of protein-ligand or protein-peptide complexes relative to the stability of the protein alone allow the rapid identification of promising complexes for further structural characterization and to assign functions.

The investigators validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects, and drug resistance in cancer cell lines, as well as drug distribution in tissues and reported these findings in the July 5, 2013, issue of the journal Science.

"We have shown that the method works on a wide variety of target proteins and allows us to directly measure whether the drug molecules reach their targets in cells and animal models," said senior author Dr. Pär Nordlund, professor of medical biochemistry and biophysics at the Karolinska Institutet. "We believe that CETSA will eventually help to improve the efficiency of many drugs and contribute to better drug molecules and more successful treatments."

"We believe that the method can provide an important diagnostic tool in the treatment of cancer, for example, as CETSA can, in principle, enable us to determine which drug is most effective at targeting the proteins in the tumor," said first author Dr. Daniel Martinez Molina, senior lab manager at the Karolinska Institutet. "This also makes it possible for clinicians to ascertain at an early stage of treatment whether the tumor has developed a certain kind of resistance and which type of therapy could then be more suitable for the patient."

Related Links:
Karolinska Institute




New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
New
Rapid Molecular Testing Device
FlashDetect Flash10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.