Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Drugs Inhibiting the KRAS Oncogene Suppress Growth of Pancreatic Tumors in Mouse Xenograft Model

By LabMedica International staff writers
Posted on 14 Jun 2013
Drugs that inhibit the activity of the enzyme GSK-3 alpha (glycogen synthase kinase 3 alpha) strongly suppress growth of human pancreatic tumor xenografts in mice as well as down regulate certain oncogenic NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B cells) target genes.

GSK-3 has since been identified as a kinase for over forty different proteins in a variety of different pathways. More...
In mammals, GSK-3 is encoded by two known genes, GSK-3 alpha and GSK-3 beta. GSK-3 has recently been the subject of intense research because it has been implicated in a number of diseases, including type II diabetes, Alzheimer's disease, inflammation, cancer, and bipolar disorder.

Investigators at the University of North Carolina (Chapel Hill, USA) have found that in pancreatic cancer cells GSK-3 alpha is upregulated by mutant KRAS (Kirsten rat sarcoma viral oncogene). The KRAS gene performs an essential function in normal tissue signaling, and its mutation is an essential step in the development of many cancers. A single amino acid substitution is responsible for the activating mutation. The transforming protein that results is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas, and colorectal carcinoma.

In a paper published in the April 1, 2013, online edition of the journal Cancer Discovery, the investigators reported that GSK-3 alpha was required for promoting critical NF-kappaB signaling in pancreatic cancer cells. The transcription factors of the NF-kappaB family are upregulated in many human cancers. NF-kappaB has roles in all stages of carcinogenesis or cancer progression, including protection from cell death, increase of cell proliferation, cell motility and metastasis, tumor inflammation, and angiogenesis. In addition, tumor cells often acquire resistance to anticancer drugs by upregulating NF-kappaB signaling.

Pharmacologic inhibition of GSK-3 suppressed growth of human pancreatic tumor explants in mice, consistent with the loss of expression of oncogenic genes such as c-myc and TERT.

“GSK-3 promotes activity of a protein called NF-kappaB. Our lab has been studying NF-kappaB for a number of years and has published that this protein is important in KRAS signaling. But how KRAS activates NF-kappaB has not been well understood. We have found a link, ” said senior author Dr. Albert Baldwin, professor of biology at the University of North Carolina. “Our data suggest that GSK-3 alpha is really an onco-protein and that KRAS utilizes GSK-3 alpha to activate both NF-kappaB pathways, called canonical and noncanonical. This finding is important because GSK-3 alpha sits on top of the two pathways and inhibits them both, thus making it a viable therapeutic target. We are conducting further pharmacologic studies.”

Related Links:


University of North Carolina



Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
8-Channel Pipette
SAPPHIRE 20–300 µL
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.