We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Imbalance in Molecular Signaling Pathways Leads to Arteriosclerosis

By LabMedica International staff writers
Posted on 30 May 2013
A recent paper described how an imbalance in expression of two genes contributes to development of cardiovascular disease by driving epithelial–mesenchymal transition (EMT) in cells lining the arteries, which cause them to calcify and harden, thereby increasing systolic blood pressure, and ultimately impairing distal blood flow.

EMT is a process by which epithelial cells lose their cell polarity and cell-cell adhesion, and gain migratory and invasive properties to become mesenchymal cells. More...
EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis, and in the initiation of metastasis for cancer progression.

Investigators at Sanford-Burnham Medical Research Institute (Orlando, FL, USA) studied the metabolic processes leading to arteriosclerosis by focusing on the interaction between the Dkk1 (dickkopf WNT signaling pathway inhibitor 1) and WNT7b (Wingless-type MMTV integration site family, member 7b) genes.

The Dkk1 gene encodes a protein that plays a key role in increasing the population of connective-tissue cells during wound repair, but prolonged Dkk1 signaling can lead to fibrosis and a stiffening of artery walls. WNT7b (Wingless-type MMTV integration site family, member 7b) is a member of a gene family consisting of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis.

The investigators reported in the May 16, 2013, online edition of the journal Arteriosclerosis, Thrombosis, and Vascular Biology that suppression of WNT7b signaling by Dkk1 enhanced EMT in aortic epithelial cells. This increased fibrotic mineralization of aortic epithelial cells through the accumulation of collagen and calcium. Inhibition of Dkk1 promoted WNT7b signaling, which prevented EMT and maintained the elastic morphology of the arterial wall epithelial cells.

"I think the strategy going forward is to find ways to modulate or inhibit Dkk1 function, but we are going to have to do it in a time-sensitive and cell type-specific fashion," said senior author Dr. Dwight A. Towler, professor of diabetes and obesity research at Sanford-Burnham Medical Research Institute. "In diseases such as chronic renal deficiency or diabetes, where unregulated Dkk1 signaling can be destructive, it may be appropriate to restrain the action of Dkk1 for a prolonged period of time."

Related Links:

Sanford-Burnham Medical Research Institute




New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Serological Pipet Controller
PIPETBOY GENIUS
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The Lumipulse G pTau217/ß-Amyloid 1-42 Plasma Ratio is FDA-cleared for use in diagnosing Alzheimer’s (Photo courtesy of Fujirebio)

First FDA Cleared Blood Test for Alzheimer’s Diagnosis Marks Turning Point in Early Detection

Alzheimer’s disease is a progressive form of dementia that affects memory, cognition, and behavior, eventually interfering with daily activities. Early and accurate diagnosis is essential to improving... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.