We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Complex Plant Thrives with a Genome Purged of Noncoding DNA

By LabMedica International staff writers
Posted on 27 May 2013
Analysis of the genome of the carnivorous bladderwort plant, Utricularia gibba, revealed that this organism has drastically limited the amount of noncoding DNA while preserving all functional genes needed to regulate and integrate the processes required for the development and reproduction of a complex organism.

Functional genes—those encoding specific proteins—comprise only about 2% of the human genome while the rest of the genome consists of noncoding DNA. More...
A recent series of papers suggested that the majority of noncoding DNA (about 80%) appeared to play a role in biochemical functions such as regulation and promotion of DNA conversion into RNA and ultimately into proteins.

A paper published in the May 12, 2013, online edition of the journal Nature questioned this role for noncoding DNA by observing that U. gibba thrives with practically no noncoding DNA.

An international team of genomic researchers based at Laboratorio Nacional de Genómica para la Biodiversidad (Irapuato, Mexico) and the University of Buffalo (NY, USA) reported that the U. gibba genome contains about 80 million DNA base pairs comprising about 28,500 genes. This genome is much smaller than those found in relatives like grape and tomato, which have much larger genomes that comprise 490 and 780 million base pairs, respectively. The difference in size results from a drastic reduction in noncoding DNA in the U. gibba genome.

“The big story is that only 3% of the bladderwort’s genetic material is so-called “junk” DNA,” said contributing author Dr. Victor Albert, professor of biological sciences at the University of Buffalo. “Somehow, this plant has purged most of what makes up plant genomes. What that says is that you can have a perfectly good multicellular plant with lots of different cells, organs, tissue types, and flowers, and you can do it without the junk. Junk is not needed.”

The extremely limited content of noncoding DNA in the U. gibba genome is particularly remarkable considering that the species has undergone three complete genome doublings since its evolutionary lineage split from that of the tomato. Thus, at three distinct times in the course of its evolution, the bladderwort’s genome doubled in size. “This surprisingly rich history of duplication, paired with the current small size of the bladderwort genome, is further evidence that the plant has been prolific at deleting nonessential DNA, but at the same time maintaining a functional set of genes similar to those of other plant species” said senior author Dr. Herrera-Estrella, professor of physiology and metabolic engineering of plants at Laboratorio Nacional de Genómica para la Biodiversidad.

Related Links:
Laboratorio Nacional de Genómica para la Biodiversidad
University of Buffalo



Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
Portable Electronic Pipette
Mini 96
Blood Glucose Test Strip
AutoSense Test
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The genomic test measures eight gene activities in a melanoma tumor and combines this data with patient factors like age and tumor thickness (Photo courtesy of 123RF)

Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients

Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read more

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.