We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Determination of RSV Prefusion Glycoprotein Crystal Structure Expected to Boost Vaccine Development

By LabMedica International staff writers
Posted on 06 May 2013
Determination of the RSV (respiratory syncytial virus) fusion (F) glycoprotein's prefusion shape is expected to boost efforts to develop a neutralizing antibody vaccine for treatment of the disease.

RSV is a negative-sense, single-stranded RNA virus of the family Paramyxoviridae, which includes common respiratory viruses such as those causing measles and mumps. More...
RSV is a member of the paramyxovirus subfamily Pneumovirinae. Its name derives from the microscopic feature that is seen when F proteins on the surface of the virus cause the cell membranes on nearby cells to merge, forming syncytia.

RSV respiratory disease is the main cause for hospitalization of children under age one. In the United States each year between 75,000 and 125,000 children in this age group are hospitalized with RSV infection. Worldwide, RSV infection accounts for nearly 7% of deaths among children between the age of one month and one year.

No effective vaccine to prevent the spread of RSV has been reported so far. Palivizumab is the first and only [US] Food and Drugs Administration-approved humanized monoclonal antibody (MAb) targeting a virus. It recognizes the “A” antigenic site of RSV F protein and prevents RSV infection in infants and young children at high risk. Ribavirin, an indirect inhibitor of RNA transcription, is the only drug licensed for the antiviral treatment of severe RSV infection; however, its effectiveness has not been conclusively established, and its clinical use is limited by its nonspecific anti-RSV activity, toxic effect, and relatively high cost.

Findings obtained by investigators at the [US] National Institutes of Health (Bethesda, MD, USA) are expected to boost development of new monoclonal antibody-based RSV vaccines. The investigators prepared prefusion-specific antibodies, which were found to be substantially more potent than the prophylactic antibody palivizumab. They determined the crystal structure for one of these antibodies, D25, in complex with the F glycoprotein in its prefusion state. Results published in the April 25, 2013, online edition of the journal Science revealed that D25 locked F in its prefusion state by binding to a quaternary epitope at the trimer apex. Electron microscopy showed that two other antibodies, AM22 and 5C4, also bound to this newly identified site of vulnerability.

It is expected that researchers will be able to use the new structural information to design vaccines capable of eliciting potent antibodies aimed at the target at the apex of the prefusion state of the glycoprotein.

Related Links:

National Institutes of Health




New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Serological Pipet Controller
PIPETBOY GENIUS
New
Automatic Hematology Analyzer
LABAS F9000
New
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.