We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Supercomputer Offers Advanced Algorithms to Develop Predictive Models of Disease

By LabMedica International staff writers
Posted on 29 Apr 2013
After one year of operation, a USD 3 million supercomputer is a large step forward in constructing a substantial computational and data-intensive infrastructure designed specifically for genomics. More...


Mount Sinai Hospital (New York, NY, USA) is one of the first academic medical centers in the United States to build and operate a supercomputer. Minerva, named after the Roman goddess of wisdom and medicine, utilizes cutting-edge computer algorithms to develop predictive models of disease that can better help diagnose and treat patients.

Built on-site by Mount Sinai’s department of scientific computing, Minerva analyzes the growing “digital universe,” including genomic and phenotypic data, as well information from electronic medical records (EMRs). It has already analyzed hundreds of human genome sequences with a projection of hundreds of thousands yearly. With thousands of processing cores working together, and tens of terabytes of memory, the supercomputer can perform complicated and sophisticated tasks rapidly and with more precision than ever before.

“With Minerva, Mount Sinai has the ability to quickly analyze genomic patterns to provide a greater understanding of the causes of disease and how to personalize treatments according to an individual’s genetic composition,” said Dennis S. Charney, MD, dean of the Icahn School of Medicine at Mount Sinai. “The supercomputer is able to accomplish real-time visualization of advanced molecular models, promoting drug development and allowing us to test the effects of molecular variations on different receptors in the body.”

The supercomputer also stores data from Mount Sinai’s biobank, called BioME, a collection of over 24,000 individuals’ DNA and plasma samples that are stored in a way that protects patients’ privacy while allowing research to be performed. The biobank accesses a wide range of genetic and environmental data on patients who have agreed to participate throughout their lives.

“The supercomputer is helping us better understand and foresee the course of disease for each patient, and to identify the outcome to a particular therapeutic intervention in advance,” said Patricia Kovatch, associate dean for scientific computing at Mount Sinai Medical Center and the engineer who constructed Minerva. “Thus, using genomic data, information from our biobank as well as complex simulations of molecules, we are able to enhance personalized medicine to a degree that has never been done before.”

Eric Schadt, PhD, Mount Sinai’s director of the Institute for Genomics and Multiscale Biology, cited the need for Minerva in critical areas of research that is already underway. “In order to analyze and integrate all the different data dimensions over the population, and build predictive models of disease, we need the supercomputer. With the infrastructure we’re creating, and the people we’ve recruited, combined with the resources already available at Mount Sinai, we are coming together to form a new epicenter of research on personalized medicine and the new biology.”

“Few research centers have the type of computing infrastructure to allow advanced modeling that Mount Sinai can now do on-site. Along with other advances in genetics and some recent outstanding additions to our faculty, Minerva further cements Mount Sinai’s reputation at the forefront of the ‘precision medicine’ movement,” said Dr. Charney.

Joseph Buxbaum, PhD, director of the Mt. Sinai’s Seaver Autism Center for Research and Treatment, according to Minerva’s supercomputing capacity plays a key role in analyzing data gathered as part of the Autism Sequencing Consortium, a multinational collaboration where all the 22,000 genes in humans will be sequenced in thousands of individuals with autism spectrum disorder. “The consortium plans to have such data for as many as 30,000 people, including controls, over the next three years, and we anticipate that this will result in the discovery of several hundred autism genes. Without Minerva’s computational power, a project of this scope would simply not be feasible.”

To date, tens of millions of core processing hours of research has been performed by Minerva, added Dr. Kovatch. “The computer has helped scientists publish over 25 research articles. Minerva helps scientists analyze their data quicker than ever before, as well as complete more complex tasks simultaneously. The end result is that more science, even basic science, is done quicker and more efficiently.”

Related Links:
Mount Sinai Hospital




New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Serological Pipet Controller
PIPETBOY GENIUS
New
Rapid Test Reader
DIA5000
New
Automatic Hematology Analyzer
LABAS F9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.