We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Cryo-Electron Microscope Study Follows Changes in Dengue Fever Virus Morphology

By LabMedica International staff writers
Posted on 25 Apr 2013
Print article
A recent paper detailed a cryo-electron microscope study that revealed morphological changes that occur when the virus that causes dengue fever is warmed to human body temperature.

Dengue fever is an acute infectious disease caused by four closely related viruses and transmitted by the bite of the female Aedes mosquito. The disease, which has no specific treatment, occurs in both epidemic and sporadic form in warm climates. The classic symptoms, following an incubation period of five to eight days, are high fever, chills, severe headache, pain in the joints, pain behind the eyes, rash, sweating, and prostration, but infected persons may experience milder symptoms. Symptoms subside in two to four days, but after a remission lasting from a few hours to two days there is another rise in temperature, and a generalized rash appears. Dengue hemorrhagic fever, a severe form of the disease, can cause hemorrhage, shock, and encephalitis. It occurs when a person who has acquired immunity to one of the viruses that cause dengue fever is infected by a different dengue virus; antibodies to the first dengue infection apparently work to aid the second virus. It is a leading cause of death among children in Southeast Asia and in recent years has become increasingly prevalent in tropical America.

Investigators at Purdue University (West Lafayette, IN, USA) used a cryo-electron microscope to examine changes in morphology of the dengue virus as it warmed from 28 °C (the temperature found in mosquito or tick vectors) to the human body temperature of 37 °C. Cryo-electron microscopy allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

The investigators reported in the April 8, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that at room temperature the virus had a smooth surface with a diameter of about 50 nanometers and little exposed membrane, while at human body temperature the virions had a bumpy appearance with a diameter of nearly 55 nanometers and some exposed membrane. The bumpy structure at 37 °C was similar to the previously predicted structure of an intermediate between the smooth form seen at lower temperatures and the mature form of the virus seen at the time of host cell invasion.

"The bumpy form of the virus would be the form present in humans, so the optimal dengue virus vaccines should induce antibodies that preferentially recognize epitopes exposed in that form," said senior author Dr. Michael G. Rossmann, professor of biological sciences at Purdue University.

Related Links:
Purdue University



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Chagas Disease Test
LIAISON Chagas
New
TRAcP 5b Assay
TRAcP 5b (BoneTRAP) Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.