We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Blocking Constant Interferon Signaling Allows the Immune System to Clear Chronic Viral Infections

By LabMedica International staff writers
Posted on 23 Apr 2013
Blocking constant Type I interferon (IFN-I) signaling in mice diminished chronic immune activation and immune suppression and enabled the animals' immune system to rejuvenate and ultimately clear persistent viral infections.

Interferons (IFNs) are glycoprotein cytokines made and released by host cells in response to the presence of pathogens such as viruses, bacteria, parasites, or tumor cells. More...
They allow for communication between cells to trigger the protective defenses of the immune system that eradicate pathogens or tumors. Interferons were named after their ability to "interfere" with viral replication within host cells. IFNs have other functions: they activate immune cells, such as natural killer cells and macrophages; they increase recognition of infection or tumor cells by up-regulating antigen presentation to T-lymphocytes; and they increase the ability of uninfected host cells to resist new viral infection. Certain symptoms, such as aching muscles and fever, are related to the production of IFNs during infection. While Type I interferons (IFN-I) are critical for antiviral immunity, chronic IFN-I signaling is associated with hyperimmune activation and disease progression in persistent infections.

Investigators at the University of California, Los Angeles (USA) injected mice suffering from chronic viral infections with an antibody that temporarily blocked IFN-I activity.

They reported in the April 12, 2013, issue of the journal Science that the blockade of IFN-I signaling diminished chronic immune activation and immune suppression, restored lymphoid tissue architecture, and increased immune parameters associated with control of virus replication, ultimately facilitating clearance of the persistent infection. The accelerated control of persistent infection induced by blocking IFN-I signaling required CD4 T-cells and was associated with enhanced IFN-gamma production.

“When cells confront viruses, they produce Type I interferons, which trigger the immune system’s protective defenses and sets off an alarm to notify surrounding cells,” said senior author Dr. David Brooks, assistant professor of microbiology, immunology, and molecular genetics at the University of California, Los Angeles. “Type-I interferon is like the guy in the watch tower yelling, "Red alert,” when the marauders try to raid the castle.”

“What we saw was entirely illogical,” said Dr. Brooks. “We had blocked something critical for infection control and expected the immune system to lose the fight against infection. Instead, the temporary break in IFN-I signaling improved the immune system’s ability to control infection. Our next task will be to figure out why and how to harness it for therapies to treat humans.”

Related Links:
University of California, Los Angeles



New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gel Cards
DG Gel Cards
New
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.