We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




3D Structure of Telomerase Mapped

By LabMedica International staff writers
Posted on 22 Apr 2013
For the first time, scientists have resolved the mystery of how the various parts of a complete telomerase enzyme fit together and function in a three-dimensional (3D) structure.

The creation of the first complete visual map of the telomerase enzyme, which is known to play a significant role in aging and most cancers, represents an advance that could open up a host of new approaches to fighting disease, according to the scientists. More...
“Everyone in the field wants to know what telomerase looks like, and there it was. I was so excited, I could hardly breathe,” said Dr. Juli Feigon, a University of California, Los Angeles (UCLA; USA) professor of chemistry and biochemistry and a senior author of the study. “We were the first to see it.”

The scientists reported each component’s positions of the enzyme in relation to one another and the entire organization of the enzyme’s active site. In addition, they demonstrate how the different components contribute to the enzyme's activity, uniquely linking structure with biochemical function.

The study’s findings were published April 11, 2013, in the print edition of the journal Nature. “We combined every single possible method we could get our hands on to solve this structure and used cutting-edge technological advances,” said co-first author Dr. Jiansen Jiang, a researcher who works with Dr. Feigon and the study’s co-senior author, Z. Hong Zhou, director of the Electron Imaging Center for Nanomachines at the California NanoSystems Institute at UCLA and a professor of microbiology, immunology and molecular genetics. “This breakthrough would not have been possible five years ago.”

“We really had to figure out how everything fit together, like a puzzle,” said co-first author Dr. Edward Miracco, a US National Institutes of Health (Bethesda, MD, USA) postdoctoral fellow in Dr. Feigon’s laboratory. “When we started fitting in the high-resolution structures to the blob in Dr. Feigon’s laboratory. “When we started fitting in the high-resolution structures to the blob that emerged from electron microscopy, we realized that everything was fitting in and made sense with decades of past biochemistry research. The project just blossomed, and the blob became a masterpiece.”

Whereas most cells have comparatively low levels of telomerase, 80%–90% of cancer cells have abnormally high telomerase activity. This prevents telomeres from shortening and extends the life of these tumorigenic cells—an important contributor to cancer progression. The new findings has huge potential for drug development that takes into account the way a drug and target molecule might interact, given the shape and chemistry of each component. Until now, designing a cancer-fighting drug that targeted telomerase was much like shooting an arrow to hit a bulls-eye while wearing a blindfold. With this complete visual map, the researchers are starting to remove that blindfold.

“Inhibiting telomerase won’t hurt most healthy cells but is predicted to slow down the progression of a broad range of cancers,” said Dr. Miracco. “Our structure can be used to guide targeted drug development to inhibit telomerase, and the model system we used may also be useful to screen candidate drugs for cancer therapy.”

The researchers solved the structure of telomerase in Tetrahymena thermophila, a one-cell eukaryotic organism in which scientists first identified telomerase and telomeres, leading to the 2009 Nobel Prize in medicine or physiology. Research on Tetrahymena telomerase in the lab of co-senior author Dr. Kathleen Collins, a professor of molecular and cell biology at the University of California (UC), Berkeley (USA), laid the genetic and biochemical foundation for the structure to be solved.

“The success of this project was absolutely dependent on the collaboration among our research groups,” said Dr. Feigon. “At every step of this project, there were difficulties. We had so many technical hurdles to overcome, both in the electron microscopy and the biochemistry. Pretty much every problem we could have, we had, and yet at each stage these hurdles were overcome in an innovative way.”

One of the biggest surprises, the researchers said, was the role of the protein p50, which acts as a hinge in Tetrahymena telomerase to allow dynamic movement within the complex; p50 was found to be an essential player in the enzyme’s activity and in the recruitment of other proteins to join the complex. “The beauty of this structure is that it opens up a whole new world of questions for us to answer,” concluded Dr. Feigon. “The exact mechanism of how this complex interacts with the telomere is an active area of future research.”

Related Links:

University of California, Los Angeles
University of California, Berkeley



New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
New
Automated Biochemical Analyzer
iBC 900
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.