Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Connectome Project Releases Brain Imaging Data for Brain Circuitry Research

By LabMedica International staff writers
Posted on 19 Mar 2013
A five-year endeavor to tie brain connectivity to human behavior has generated a set of cutting-edge imaging and behavioral data to the scientific community. More...
The project has two major goals: to collect huge amounts of data using sophisticated brain imaging modalities on a large population of healthy adults, and to make the data freely available so that scientists worldwide can make additional discoveries about brain circuitry.

The initial data release from the Human Connectome Project includes brain imaging scans in addition to behavioral information--individual differences in cognitive capabilities, personality, emotional characteristics, and perceptual function--collected from 68 healthy adult volunteers. Over the next several years, the number of subjects evaluated will increase steadily to a final target of 1,200. The initial release is an important milestone because the new data have much higher resolution in space and time than data obtained by traditional brain scans.

The Human Connectome Project (HCP) consortium is led by David C. Van Essen, PhD, a professor at Washington University School of Medicine in St. Louis (MO, USA), and Kamil Ugurbil, PhD, director of the Center for Magnetic Resonance Research and a professor at the University of Minnesota (Twin Cities, USA).

“By making this unique data set available now, and continuing with regular data releases every quarter, the Human Connectome Project is enabling the scientific community to immediately begin exploring relationships between brain circuits and individual behavior,” said Dr. Van Essen. “The HCP will have a major impact on our understanding of the healthy adult human brain, and it will set the stage for future projects that examine changes in brain circuits underlying the wide variety of brain disorders afflicting humankind.”

The consortium includes more than 100 investigators and technical staff at 10 institutions in the United States and Europe. It is funded by 16 components of the U.S. National Institutes of Health (Bethesda, MD, USA) via the Blueprint for Neuroscience Research. “The high quality of the data being made available in this release reflects an intensive, multiyear effort to improve the data acquisition and analysis methods by this dedicated international team of investigators,” stated Dr. Ugurbil.

The data set includes information about brain connectivity in each individual, using two distinct magnetic resonance imaging (MRI) approaches. One, called resting-state functional connectivity, is based on spontaneous fluctuations in functional MRI (fMRI) signals that occur in a complex pattern in space and time throughout the gray matter of the brain. Another, called diffusion imaging, provides information about the long-distance “wiring,” the anatomic pathways navigating the brain’s white matter. Each technique has its own limitations, and assessments of both functional connectivity and structural connectivity in each subject should allow deeper insight than by either technique alone.

Each participant is also scanned while performing a variety of tasks within the scanner, thereby providing extensive data about Task-fMRI brain activation patterns. Behavioral data using a range of tests performed outside the scanner are being released along with the scan data for each subject. The study participants are drawn from families that include siblings, some of whom are twins. This will enable studies of the heritability of brain circuits.

The imaging data set released by the HCP takes up approximately two terabytes of computer memory and is stored in a customized database called “ConnectomeDB.”

“ConnectomeDB is the next-generation neuroinformatics software for data sharing and data mining. It's a convenient and user-friendly way for scientists to explore the available HCP data and to download data of interest for their research,” concluded Daniel S. Marcus, PhD, assistant professor of radiology and director of the Neuroinformatics Research Group at Washington University School of Medicine. “The Human Connectome Project represents a major advance in sharing brain imaging data in ways that will accelerate the pace of discovery about the human brain in health and disease.”

Related Links:
Human Connectome Project
Washington University School of Medicine in St. Louis
University of Minnesota


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Gold Member
Hematology Analyzer
Medonic M32B
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.