We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Common Cancer Vaccine Ingredient Diverts T cells from Tumors

By LabMedica International staff writers
Posted on 18 Mar 2013
Scientists have recently discovered that a common vaccine ingredient diverts T cells from tumors.

Cancer vaccines that attempt to trigger an immune system assault are unsuccessful because the killer T cells aimed at tumors instead find the vaccination site a more inviting target, according to recent research. More...
Scientists from the University of Texas MD Anderson Cancer Center (Houston, USA) reported their findings March 3, 2013, in the journal Nature Medicine.

A common substance used in many cancer vaccines to boost immune attack betrays the cause by facilitating an accumulation of T cells at the vaccination site, which then summon more T cells to help with the perceived threat. “Vaccines stimulate production of T cells primed to attack the target cancer, and there are many T cells in the bloodstream after vaccination. We found that only a few get to the tumor while many more are stuck at or double back to the vaccination site,” said senior author Willem Overwijk, PhD, in MD Anderson’s department of melanoma medical oncology.

The result of this process is mostly unscathed tumors while an overstimulated immune response can cause lesions at the injection site. The investigators found that a key perpetrator in this failure is incomplete Freund’s adjuvant (IFA), a mineral oil-based adjuvant included in many vaccines to trigger the immune response. “IFA sticks around the vaccination site for up to three months, along with the antigen designed to trigger immunity against the tumor,” Dr. Overwijk said. “T cells keep attacking and secreting chemokines to call for reinforcements. But it’s an unkillable target; T cells can’t kill mineral oil.”

Ultimately, the T cells die. “The vaccination site increasingly resembles a viral infection, with lots of damaged tissue and antigens,” Dr. Overwijk said. “Switching to a saline-based adjuvant in a melanoma vaccine reversed the T cell effect in mice. Major accumulations of T cells gathered in tumors, shrinking them, with minimal T cell activity at the vaccination site.”

Peptide antigens are available for almost all types of cancer, according to Dr. Overwijk. A saline adjuvant could alter the weak performance of cancer vaccines. A clinical trial of the model is expected to open later 2013 at the University of Virginia (Charlottesville, USA) and MD Anderson. Dr. Overwijk and colleagues noted 98 US- approved clinical trials of vaccines against a range of cancers have nearly all failed, while another 37 trials are open, enrolling patients. The US Food and Drug Administration (FDA) has approved only one therapeutic vaccine, for treatment of prostate cancer, out of all of those trials.

“Our group and many other researchers have been trying for years to improve the performance of cancer vaccines, to no avail,” Dr. Overwijk said. “People kept trying because of these beguiling T cell levels in the blood. But our data suggest that the very nature of IFA-based vaccines may make it almost impossible for them to work well.”

In past studies and clinical trials, tumors were seldom evaluated for evidence of T cell penetration. In humans, they are frequently inoperable, and there was no indication that it needed to be done. “But a few researchers did analyze human tumors for T cell infiltration and largely found what we found in our mouse experiments,” Dr. Overwijk said.

The scientists examined the fate of melanoma-specific CD8-positive T cells after vaccination with the gp100 peptide with and without IFA. Both vaccines increased levels of the desired T cells in the blood, but with IFA, the T cells decreased to nearly undetectable levels after three weeks and did not recover even with an engineered virus-based booster. The vaccine-lacking IFA produced similar peak amounts of the T cells, a response that persisted over time.

The researchers fluorescently tagged T cells in the mouse model to see where they went. The study’s findings revealed that mice without IFA had the bulk of T cells light up in their tumors with minimal presence at the vaccination site. Moreover, T cells generated at the injection site in mice that received IFA-based vaccine, with a tiny showing in the tumor. Response duration was tested in gp100/IFA and control IFA vaccines. The antigen/IFA combination gathered and persisted at the vaccination site, where it could still stimulate the proliferation of injected T cells 96 days after vaccination.

A separate set of research showed the antigen/IFA-driven T cells were forced to kill themselves at the vaccination site by a variety of cell suicide-inducing proteins. Dr. Overwijk and colleagues suggested that a possible answer to the problem was to decrease the size and persistence of vaccine “depots” at the injection site. They evaluated a vaccine based on a saline solution instead of IFA and found that antigens cleared more quickly but did not trigger the desired T cell response. A combination of three stimulatory molecules (covax) was added to the saline/peptide vaccine, producing a strong T cell response. IFA/peptide vaccine produced a strong T cell response but also stronger post-peak T cell suicide.

A comparison of saline/peptide/covax vs IFA/peptide/covax demonstrated that the saline version caused T cells to zoom in on the tumors and killed them, whereas the IFA version focused T cells at the vaccination site, killing normal tissue and inducing chemokines that damaged and killed T cells.

“IFA-based vaccination sites essentially outcompete tumor sites for T cell recognition and accumulation, chemokine production, and tissue damage,” Dr. Overwijk concluded. “It’s an engineering flaw in those vaccines that we didn’'t appreciate until now. Fortunately, our results also directly instruct us how to design new, more powerful vaccine formulas for treating people with cancer.”

Related Links:

University of Texas MD Anderson Cancer Center



New
Gold Member
Hematology Analyzer
Medonic M32B
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Rapid Test Reader
DIA5000
New
Specimen Radiography System
TrueView 200 Pro
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: A diagnostic test can distinguish patients with head and neck squamous cell carcinoma who can be cured with surgery alone (Photo courtesy of University of Turku)

Novel Diagnostic Tool to Revolutionize Treatment Guidance of Head and Neck Cancer

Head and neck squamous cell carcinoma (HNSCC) is a solid tumor type commonly treated with surgery. However, there has been no clinically available method to determine which patients can be cured with surgery... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Microbiology

view channel
Image: The groundbreaking salmonella antimicrobial resistance prediction platform has demonstrated 95% accuracy (Photo courtesy of Yujie You et al., DOI: 10.1016/j.eng.2025.01.013)

New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance

Antimicrobial-resistant Salmonella strains are a growing public health concern due to the overuse of antimicrobials and the rise of genetic mutations. Accurate prediction of resistance is crucial for effective... Read more

Technology

view channel
Image: The Check4 gene-detection platform (Photo courtesy of IdentifySensors)

Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells

A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.