We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Class of Anti-Influenza Drugs Less Likely to Trigger Resistance

By LabMedica International staff writers
Posted on 06 Mar 2013
A team of molecular virologists has designed a small molecule drug that blocks the spread of the influenza virus more effectively and with less likelihood of triggering development of resistance than the currently available antiviral agents.

Drugs for treatment of influenza are neuraminidase inhibitors that target the virus' surface neuraminidase enzyme. More...
They work by blocking the function of the viral neuraminidase protein, thus preventing the virus from reproducing by budding from the host cell. Oseltamivir (Tamiflu) a prodrug, Zanamivir (Relenza), Laninamivir (Inavir), and Peramivir belong to this class. Unlike the M2 inhibitors, which work only against influenza A, neuraminidase inhibitors act against both influenza A and influenza B.

The main failing of the currently used neuraminidase inhibitors is the rapid development of strains of the virus that are resistant to the drugs. To counter this problem investigators at Simon Fraser University (Burnaby, BC, Canada) searched for potential drugs that would be as efficient as the currently used drugs but less likely to trigger development of resistant strains of the virus.

They reported in the February 21, 2013, online edition of the journal Science Express that they had discovered—and confirmed the mode of action via structural and mechanistic studies—a new class of specific, mechanism-based anti-influenza drugs that functioned via the formation of a stabilized covalent intermediate in the influenza neuraminidase enzyme.

These compounds functioned in cell-based assays and in animal models, with efficacies comparable to that of the neuraminidase inhibitor zanamivir and with broad-spectrum activity against drug-resistant strains in vitro.

The investigators maintain that the similarity of the drugs' structure to that of sialic acid, the natural substrate of neuraminidase, and their mechanism-based design make them attractive antiviral candidates.

The new class of drugs is particularly effective due to its water solubility. “They reach the patient’s throat where the flu virus is replicating after being taken orally,” said contributing author Dr. Masahiro Niikura, associate professor of virology at Simon Fraser University. “Influenza develops resistance to Repenza less frequently, but it is not the drug of choice like Tamiflu because it is not water-soluble and has to be taken as a nasal spray. Our new compounds are structurally more similar to sialic acid than Tamiflu. We expect this closer match will make it much more difficult for influenza to adapt to new drugs.”

Related Links:

Simon Fraser University



Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
Hemodynamic System Monitor
OptoMonitor
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.