We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Cell Division Checkpoint Genes Regulate Chromosome Dispersal

By LabMedica International staff writers
Posted on 14 Feb 2013
Observation of cell division in yeast has revealed how a pair of genes works in tandem to ensure that the correct number of chromosomes is transferred to each daughter cell.

The spindle checkpoint ensures accurate chromosome segregation by delaying cell-cycle progression until all sister kinetochores capture microtubules from opposite poles and come under tension. More...
Kinetochores are assemblies of at least 19 proteins on chromatids where the spindle fibers attach during cell division to pull sister chromatids apart.

Although the checkpoint is activated by either the lack of kinetochore-microtubule attachments or defects in the tension exerted by microtubule-generated forces, it has not been clear whether these signals were linked.

Investigators at the Oklahoma Medical Research Foundation (Oklahoma City, USA) used high-powered microscopy to elucidate the stages of chromosome-microtubule interactions and their regulation by the genes Ipl1/Aurora B and Mps1 through meiosis.

They reported in the January 31, 2013, online edition of the journal Science that Ipl1/Aurora B released kinetochore-microtubule (kMT) associations following meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs began their spindle interactions with incorrect kMT attachments. Ipl1/Aurora B released these improper connections while Mps1 triggered the formation of new force-generating microtubule attachments.

"Ipl1/Aurora B and Mps1 genes act as quality controllers and master regulators. If they are removed, the entire process goes haywire," said senior author Dr. Dean Dawson, a member of the cell cycle and cancer biology research program at the Oklahoma Medical Research Foundation.

"When cells divide, they first duplicate the DNA, which is carried on the chromosomes. Think of the cell kind of like a factory. First it duplicates the chromosomes—so that each one becomes a pair, then it lines them up so the pairs can be pulled apart—with one copy going to each daughter cell. This way, one perfect set goes to each new daughter cell, ensuring that the two new cells that come from the division have full sets of the DNA," said Dr. Dawson. "The human body begins as a single cell. Through the process of cell division, we come to be composed of trillions of cells. And every one of those divisions must be perfect so that each new cell inherits a correct set of chromosomes. Given the sheer number of cell divisions involved, it is amazing there are not more mistakes. My laboratory is interested in dissecting the machine that does this so well and understanding why it fails in some rare cases."

Related Links:
Oklahoma Medical Research Foundation


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Portable Electronic Pipette
Mini 96
New
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
New
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.