We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Virtual Heart Reveals Important Information on Common Heart Defect

By LabMedica International staff writers
Posted on 06 Feb 2013
With advanced computational technology and information, researchers have built a highly accurate 3D model of a mammalian heart, enabling a study that revealed new information about the mechanisms underlying one of the world’s most common heart conditions.

In a collaborative effort led by scientists at the University of Manchester (Manchester, UK), the model was developed by taking a series of very thin slices of a sheep’s heart, imaging them in 2D, then computationally rendering them into a 3D virtual model. More...
The anatomically realistic reconstruction includes details of the complex fiber structure of the tissue, and the segmentation of the upper chambers of the heart into known distinctive regions. Single-cell models that take into account information about the electrical activity in different atrial regions were then incorporated into the model. The virtual heart was then used to investigate the sudden irregular heart-rate condition “atrial fibrillation” (AF), which affects approximately 1.5% of the population worldwide, and is known to increase the risk and severity of stroke, yet very little is known about its cause(s).

The research team focused on the pulmonary vein, a common area that triggers AF. They simulated erratic electrical waves passing through the vein and the surrounding atrial tissue, then studied the impact this had on the rest of the heart. Electrical heterogeneity (regional differences in the electrical activity across the heart tissue) was found to be a key to initiation of AF. The largest electrical difference was between the pulmonary vein and the left atrium, which may help explain why the pulmonary vein region is a common source of AF. The scientists also identified that fiber structure plays an important role in the development of AF. There were directional variations in the conduction of electrical waves along and across the fibers, variations known as anisotropy. The fiber structure in the left atrium is much more organized compared with the complex structures of the pulmonary vein region. The sudden variation in conduction at the junction between the left atrium and the pulmonary vein regions appeared to contribute to the development of AF.

“This study has for the first time identified the individual role of electrical heterogeneity and fiber structure in the initiation and development of AF. It has not previously been possible to study the contribution of the two separately, but using our computational model we’ve been able to clearly see that both electrical heterogeneity and fiber structure need to be taken into consideration when treatment strategies for AF are being devised,” explained lead investigator Prof. Henggui Zhang: “We’re really excited about the potential that our virtual heart opens up for research into this incredibly complex organ. By bringing together physics and biology, we hope to unlock some of the unanswered questions about atrial fibrillation, a condition, which is only going to become more common as people live longer. ”

The next step planned for the team is to find a way to target the electrical conduction in specific regions of the heart to better protect against AF.

The study was published online January 16, 2013, in the Royal Society’s independent journal Interface Focus.

Related Links:
University of Manchester


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Collection and Transport System
PurSafe Plus®
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.