We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Antimicrobial Hydrogels Dissolve and Sterilize Drug-Resistant Biofilms

By LabMedica International staff writers
Posted on 04 Feb 2013
Synthetic antimicrobial hydrogels have been developed that demonstrate 100% efficiency in destruction of biofilms, with application potential for catheter and medical device coatings, implants, skin, and everyday surfaces.

Bacterial biofilms, which are adhesive groupings of pathogenic cells present in 80% of all infections, develop on the skin and on medical devices and household surfaces where they are difficult to treat and demonstrate high resistance to antibiotics. More...


In the current study, which was published in the January 7, 2013, issue of the journal, Angewandte Chemie, investigators at IBM (San Jose, CA, USA) and the Institute of Bioengineering and Nanotechnology (Singapore) described the development of biodegradable and injectable/moldable hydrogels with hierarchical nanostructures. These 90% aqueous hydrogels were made from specifically designed macromolecules containing a large number of atoms, which combined water solubility, positive charge, and biodegradability characteristics. When mixed with water and warmed to body temperature the polymers self-assembled, swelling into a synthetic gel that was easy to manipulate.

The hydrogels were shown to possess broad-spectrum antimicrobial activities and biofilm-disruption capability. Furthermore, they demonstrated no cytotoxicity in vitro, and displayed excellent skin biocompatibility in animals.

"This is a fundamentally different approach to fighting drug-resistant biofilms. When compared to capabilities of modern-day antibiotics and hydrogels, this new technology carries immense potential,” said Dr. James Hedrick, advanced organic materials scientist at IBM. “This new technology is appearing at a crucial time as traditional chemical and biological techniques for dealing with drug-resistant bacteria and infectious diseases are increasingly problematic.”

“We were driven to develop a more effective therapy against super bugs due to the lethal threat of infection by these rapidly mutating microbes and the lack of novel antimicrobial drugs to fight them. Using the inexpensive and versatile polymer materials that we have developed jointly with IBM, we can now launch a nimble, multipronged attack on drug-resistant biofilms which would help to improve medical and health outcomes,” said Dr. Yi-Yan Yang, group leader at the Institute of Bioengineering and Nanotechnology.

Related Links:
IBM
Institute of Bioengineering and Nanotechnology


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The new analysis of blood samples links specific protein patterns to five- and ten-year mortality risk (Photo courtesy of Adobe Stock)

Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention

Elevated levels of specific proteins in the blood can signal increased risk of mortality, according to new evidence showing that five proteins involved in cancer, inflammation, and cell regulation strongly... Read more

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.