Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microneedle Patch Detects Skin Cancer Early

By LabMedica International staff writers
Posted on 31 May 2024

Wearable bioelectronics has emerged as a significant innovation in healthcare, especially in the field of biosensing, providing a new method to monitor individual health for both diagnostic and therapeutic purposes. More...

Despite its advancements, there has been a lack of progress specifically in the area of cancer, and more notably in skin cancer detection. Researchers have now introduced a novel technique for identifying malignant melanoma, which is the most serious type of skin cancer and also the fastest growing.

A groundbreaking study conducted by researchers at Karolinska Institutet (Stockholm, Sweden) led to the development of a new type of patch equipped with microneedles designed to detect the biomarker tyrosinase directly within the skin. Tyrosinase is an enzyme that serves as a crucial biomarker for malignant melanoma. By assessing the enzyme directly in the skin, this approach allows for the rapid detection of changes indicative of the disease. The feasibility of this transdermal microneedle sensor for directly quantifying tyrosinase has been demonstrated in an ex vivo skin model.

In their research, scientists employed human tissue samples from healthy individuals. They applied tyrosinase to these samples to simulate the presence of skin cancer. Their findings suggest that this new patch could serve as an effective alternative to traditional diagnostic techniques, facilitating earlier detection and treatment of malignant melanoma. The researchers are optimistic that their invention will reduce the need for invasive procedures and enhance the quality of life for patients. This innovation marks a significant step forward in improving skin health monitoring and could potentially be adapted to detect other biomarkers simply by altering its design.

“Our method is less invasive and has the potential to provide faster and more reliable results compared to traditional biopsies,” said Onur Parlak, Associate Professor at Karolinska Institutet. “Our goal is to continue developing and improving this technique to offer more accurate and painless diagnostics.” 

Related Links:
Karolinska Institutet


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Silver Member
PCR Plates
Diamond Shell PCR Plates
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.