We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Analyzes 30K Data Points Per Medical Imaging Pixel in Cancer Search

By LabMedica International staff writers
Posted on 16 Jan 2025

A new artificial intelligence (AI)-powered tool can detect cell-level characteristics of cancer by analyzing data from very small tissue samples, some as tiny as 400 square micrometers, equivalent to the width of five human hairs. More...

The tool, called MISO (Multi-modal Spatial Omics), processes vast amounts of data and applies insights to even the smallest regions on medical images. It has the potential to guide doctors toward the most effective therapies for various cancers, according to a recent paper about MISO published in Nature Methods.

MISO was developed by researchers at the Perelman School of Medicine at the University of Pennsylvania (Philadelphia, PA, USA) to work in the field of "spatial multi-omics." This area of research aims to gain insights into different conditions by considering the physical arrangement of tissue while examining various "-omics" modalities, such as transcriptomics (gene expression), proteomics (proteins), and metabolomics (metabolites and their processes), among others. In spatial transcriptomics, for example, a single pixel in an image contains 20,000 to 30,000 data points that need to be analyzed across multiple -omics layers, and this number can increase significantly if multiple omic layers are considered. By comparison, MRI and CT scans have only one data point (shades of gray) per pixel to interpret. Without AI tools like MISO, doctors and researchers would find it nearly impossible to uncover the valuable insights that the system can detect.

Using MISO, the researchers uncovered new information about several types of cancer, including bladder, gastric, and colorectal cancers, by analyzing data and images from donated patient tissue. In bladder cancer, MISO identified a specific group of cells responsible for forming tertiary lymphoid structures, which are associated with better responses to immunotherapy. In gastric cancer, MISO was able to differentiate cancer cells from the surrounding mucosa. In colorectal cancer, the system identified various sub-classes of cancer cells, shedding light on the distinct malignant cells within a single tumor. MISO was also used to analyze non-cancerous brain tissue structures.

These breakthroughs can guide more effective therapies, improve survival rates, and provide insights that are very challenging, if not impossible, to obtain without an advanced AI tool like MISO. Moving forward, the team aims to expand their knowledge of spatial -omics and pathology imaging to enhance MISO’s capabilities, including the ability to analyze multiple tissue samples simultaneously, which would greatly increase its output. While some data, such as epigenetic marks (chemicals that regulate DNA and are influenced by the environment), have not yet been widely measured, MISO’s AI system allows it to "learn" from the information it processes, enabling it to recognize new data as it becomes more available.

“As the field of spatial omics advances, it has become possible to measure multiple -omics modalities from the same tissue slice, providing complementary information and offering a more comprehensive, insightful view,” said Mingyao Li, PhD, the study’s senior author and a professor of Biostatistics and Digital Pathology. “MISO addresses a huge data challenge by enabling simultaneous analysis of all spatial -omics modalities, as well as microscopic anatomy images when available. It is the only method that is able to handle datasets like these with hundreds of thousands of cells per sample.”

Related Links:
Perelman School of Medicine


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test
New
Gold Member
Latex Test
SLE-Latex Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.