We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

By LabMedica International staff writers
Posted on 19 Dec 2024

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that are then mounted on glass slides. More...

An optical microscope is then used to examine the tissue in detail. If tumor cells are found on the surface of the tissue sample, it indicates that the surgeon has cut through, rather than around, the tumor, leaving some of the tumor behind, which may require follow-up surgery to remove more tissue. However, frozen section pathology faces issues such as tissue artifacts and reduced staining quality, which can affect diagnostic accuracy and surgical decisions. A new imaging technology now offers a faster and more cost-effective way for surgeons to image tissue samples during surgery to determine whether the entire tumor has been removed or if more tissue needs to be excised.

Bioengineers at the California Institute of Technology (Caltech, Pasadena, CA, USA) have introduced a new imaging technique called parallel ultraviolet photoacoustic microscopy (PUV–PAM), detailed in a study published in Science Advances. This method is based on photoacoustic microscopy (PAM), a technique that excites tissue samples with a low-energy laser, causing the tissue to vibrate. The system detects the ultrasonic waves emitted by the vibrating tissue. Since cell nuclei absorb more light than the surrounding material, PAM can reveal the size and distribution of nuclei and the packing density of cells. Cancerous tissue typically has larger nuclei and more densely packed cells. The research team has previously developed PAM systems for imaging bone and breast tissue, but to make these systems suitable for use in the operating room, they needed to overcome the limitations of the ultraviolet lasers used, which previously restricted the imaging speed.

To address this issue, the researchers divided a single laser beam into eight smaller, parallel laser "spots," allowing the system to cover the tissue sample more quickly. Additionally, PUV-PAM combines two scanning techniques to achieve faster imaging of slide-free tissues. These innovations make the technique approximately 40 times faster than the previous state-of-the-art methods developed by the team. The new PUV–PAM technique can eliminate the need to freeze, section, or stain tissue samples. Even thick samples with irregular surfaces, which are typically too thick for traditional microscopy, can be directly imaged. This method could enable oncologists to analyze biopsy samples during surgery, allowing them to remove additional tissue if necessary, potentially eliminating the need for follow-up surgeries.

"We hope this new imaging system can provide more opportunities for intraoperative pathological examination of slide-free specimens in oncology surgeries. We believe it has the potential to revolutionize intraoperative histology," says Rui Cao, lead author of the new paper. "With the current system, we can image a 1 cm2 sample at 1.3 micron resolution within about five minutes. And we demonstrate in the paper that this technique is effective in a variety of tissue types."


Gold Member
Veterinary Hematology Analyzer
Exigo H400
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Rapid Test Reader
DIA5000
New
Drug Test Kit
DrugCheck 3000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: The RNA-seq based diagnostic test for pediatric leukemia ensures better outcomes for children with this common cancer (Photo courtesy of Qlucore)

RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia

A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.