We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Tool Analyzes Placentas at Birth to Accurately Detect Health Risks

By LabMedica International staff writers
Posted on 16 Dec 2024
Print article
Image: The machine-learning model analyzes photos of placentas to detect health risks (Photo courtesy of Patterns, DOI: 10.1016/j.patter.2024.101097)
Image: The machine-learning model analyzes photos of placentas to detect health risks (Photo courtesy of Patterns, DOI: 10.1016/j.patter.2024.101097)

The placenta is crucial to the health of both the pregnant individual and the baby during pregnancy, but it is often not examined thoroughly after birth, especially in areas with limited medical resources. This oversight can prevent early detection of issues that could lead to complications, potentially missing opportunities for early intervention to improve outcomes for both mother and child. To address this, a new tool combining computer vision and artificial intelligence (AI) has been developed, which could help clinicians rapidly evaluate placental health at birth and improve neonatal and maternal care.

Researchers from Northwestern University (Evanston, IL, USA) and Penn State (University Park, PA, USA) have introduced a computer program named PlacentaVision. This tool analyzes a simple photograph of the placenta to identify abnormalities linked to infections and neonatal sepsis, a severe condition that affects millions of newborns globally. Early identification of infections through tools like PlacentaVision may allow clinicians to take swift action, such as administering antibiotics to the mother or baby and closely monitoring the newborn. According to the researchers, PlacentaVision is designed for use across diverse medical populations.

In their study, published in the journal Patterns, the researchers employed cross-modal contrastive learning, an AI technique that aligns and interprets the relationship between different types of data—visual (images) and textual (pathological reports). They compiled a large and varied dataset of placental images and associated pathological reports spanning 12 years, using this information to train the program to make predictions from new images. The team also developed various image modification strategies to simulate different conditions under which the photos were taken, helping to evaluate the model's robustness.

The outcome was PlacentaCLIP+, a powerful machine learning model that can accurately analyze placental images to detect health risks. The model was cross-nationally validated to ensure consistent performance across different populations. PlacentaVision is designed to be user-friendly, with potential applications through a smartphone app or integration into medical record systems, allowing doctors to receive immediate feedback post-delivery. Moving forward, the team plans to enhance the tool by incorporating additional placental features and clinical data, improving its predictive capabilities while also contributing to research on long-term health outcomes. They also aim to test the tool in various hospitals to ensure its functionality in different settings.

“Placenta is one of the most common specimens that we see in the lab,” said study co-author Dr. Jeffery Goldstein, director of perinatal pathology and an associate professor of pathology at Northwestern University Feinberg School of Medicine. “When the neonatal intensive care unit is treating a sick kid, even a few minutes can make a difference in medical decision making. With a diagnosis from these photographs, we can have an answer days earlier than we would in our normal process.”

“In low-resource areas — places where hospitals don’t have pathology labs or specialists — this tool could help doctors quickly spot issues like infections from a placenta,” added Yimu Pan, lead author on the study. “In well-equipped hospitals, the tool may eventually help doctors determine which placentas need further, detailed examination, making the process more efficient and ensuring the most important cases are prioritized.”

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
PSA Test
Humasis PSA Card
New
Chagas Disease Test
LIAISON Chagas

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.