We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Model Identifies Sex-Specific Risks Associated with Brain Tumors

By LabMedica International staff writers
Posted on 10 Oct 2024
Print article
Images show regions of glioblastoma tumors in females (top) and males (bottom). AI models predict presence of relatively higher risk (red) and lower risk (blue) areas (Photo courtesy of Tiwari Lab/UW–Madison)
Images show regions of glioblastoma tumors in females (top) and males (bottom). AI models predict presence of relatively higher risk (red) and lower risk (blue) areas (Photo courtesy of Tiwari Lab/UW–Madison)

For years, cancer researchers have observed that men are more likely than women to develop glioblastoma, a deadly and aggressive form of brain cancer with a median survival of just 15 months after diagnosis. Additionally, these tumors tend to be more aggressive in men. However, identifying specific characteristics that could help predict which tumors will grow faster has remained a challenge. Now, researchers are turning to artificial intelligence (AI) to uncover these risk factors and explore how they differ between men and women.

Scientists at the University of Wisconsin–Madison (Madison, WI, USA) are utilizing AI's computational capabilities to analyze large datasets of medical images, aiming to find patterns that could assist oncologists in making more informed decisions for their patients. Their goal is to address the entire range of challenges that cancer patients face, from diagnosis and prognosis to assessing treatment response. In this study, the researchers focused on digital images of pathology slides—thin sections of tumor samples—in an effort to detect patterns that might predict how fast a tumor could grow and, consequently, how long a patient might survive. Accurate prognosis is critical, as it influences treatment decisions and impacts patients’ quality of life after diagnosis.

To tackle this problem, the researchers developed an AI model capable of detecting subtle patterns in pathology slides that might be imperceptible to the human eye. They trained the model using data from over 250 glioblastoma studies, teaching it to recognize distinctive tumor features such as the abundance of certain cell types and the extent of the tumor’s invasion into nearby healthy tissue. Additionally, the model was trained to identify correlations between these features and patients' survival times, while also considering their sex. Through this approach, the team created an AI model that can identify risk factors for more aggressive tumors, with distinct patterns associated with each sex.

For women, higher-risk characteristics identified by the AI model included tumors that were infiltrating into healthy tissue. In men, the presence of pseudopalisading cells—cells that surround dying tissue—was linked to more aggressive tumors. The researchers' initial findings, published in Science Advances, revealed that the model also detected tumor traits associated with poorer prognoses for both sexes. The team is now extending their work to MRI data and has started using AI to analyze other cancers, such as pancreatic and breast cancers, with the goal of improving patient outcomes. This study could pave the way for more personalized treatment approaches for glioblastoma patients.

“There’s a ton of data collected in a cancer patient’s journey,” said radiology and biomedical engineering professor Pallavi Tiwari. “Right now, unfortunately, it’s usually studied in a siloed fashion, and this is where AI has huge potential. By uncovering these unique patterns, we hope to inspire new avenues for personalized treatment and encourage continued inquiry into the underlying biological differences seen in these tumors.”

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Epstein-Barr Virus Test
Mononucleosis Rapid Test
New
Chlamydia Trachomatis Assay
Chlamydia Trachomatis IgG

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.