We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




3D Pathology with AI to Enhance Prognosis Accuracy for Barrett's Esophagus Patients

By LabMedica International staff writers
Posted on 08 Aug 2024

Barrett's esophagus is a condition where the lining of the esophagus changes due to chronic gastroesophageal reflux. More...

Individuals with Barrett's esophagus are at a slightly increased risk of developing esophageal cancer and require regular surveillance endoscopies. During these procedures, gastroenterologists collect numerous biopsies from the affected tissues. These samples are then cut into thin sections and placed on glass slides for examination under a microscope by pathologists. However, the tissue sections that pathologists view represent only about 1% or less of the actual biopsies and provide just a two-dimensional view, which can be misleading. Researchers are now conducting clinical studies of archived tissues from patients with the condition to develop computational 3D pathology methods for Barrett’s esophagus risk stratification.

The research team at UW College of Engineering (Seattle, WA, USA) had previously invented 3D pathology methods to assess prostate cancer risk and shifted their focus on gastrointestinal applications of their technologies, including for evaluating esophageal cancer risk in patients with Barrett’s esophagus. They aim to demonstrate that analyzing 3D pathology datasets from entire endoscopic biopsies using AI can better determine which patients might progress to esophageal cancer and thus require more intensive treatment. The team is utilizing open-top light-sheet microscopy for this purpose. This innovative technique allows for 3D microscopic viewing of biopsies without the need for slicing, preserving the entire tissue structure.

This "slide-free" microscopy technique involves using a light sheet and high-speed cameras to image tissue samples stained with fluorescent dyes and made transparent through a process called optical clearing. Once the 3D pathology datasets are prepared, AI is employed to either highlight the most crucial areas of the biopsy for pathologist review or to autonomously evaluate the tissues. In previous research published in Modern Pathology, the team introduced a deep learning approach that proved more efficient at identifying malignancies in Barrett’s esophagus biopsies than traditional methods, significantly reducing the number of images pathologists need to examine. Furthermore, the team is enhancing the AI model's training process by developing an advanced weakly-supervised deep learning triage system for analyzing 3D pathology datasets.

“We are trying to identify the highest risk patients so that they may receive early treatments that could be critical for their survival,” said Professor Jonathan Liu, professor of mechanical engineering, bioengineering, and laboratory medicine & pathology at the University of Washington. “In our archived tissue samples, some patients progressed to cancer, and we are trying to detect what in their tissues could have predicted that at the earliest stages.”

Related Links:
UW College of Engineering


New
Gold Member
Collection and Transport System
PurSafe Plus®
Collection and Transport System
PurSafe Plus®
New
Human Estradiol Assay
Human Estradiol CLIA Kit
New
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Left is the original cell image and right is same cell image zoomed in and rendered in the special imaging software (Photo courtesy of FIU)

Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear

Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.