We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




3D Pathology with AI to Enhance Prognosis Accuracy for Barrett's Esophagus Patients

By LabMedica International staff writers
Posted on 08 Aug 2024
Print article
Image: Examples of AI-triaged 3D image sections of a biopsy show how 3D pathology (left) upgraded the diagnosis compared with conventional 2-dimensional methods (right) (Photo courtesy of UW College of Engineering)
Image: Examples of AI-triaged 3D image sections of a biopsy show how 3D pathology (left) upgraded the diagnosis compared with conventional 2-dimensional methods (right) (Photo courtesy of UW College of Engineering)

Barrett's esophagus is a condition where the lining of the esophagus changes due to chronic gastroesophageal reflux. Individuals with Barrett's esophagus are at a slightly increased risk of developing esophageal cancer and require regular surveillance endoscopies. During these procedures, gastroenterologists collect numerous biopsies from the affected tissues. These samples are then cut into thin sections and placed on glass slides for examination under a microscope by pathologists. However, the tissue sections that pathologists view represent only about 1% or less of the actual biopsies and provide just a two-dimensional view, which can be misleading. Researchers are now conducting clinical studies of archived tissues from patients with the condition to develop computational 3D pathology methods for Barrett’s esophagus risk stratification.

The research team at UW College of Engineering (Seattle, WA, USA) had previously invented 3D pathology methods to assess prostate cancer risk and shifted their focus on gastrointestinal applications of their technologies, including for evaluating esophageal cancer risk in patients with Barrett’s esophagus. They aim to demonstrate that analyzing 3D pathology datasets from entire endoscopic biopsies using AI can better determine which patients might progress to esophageal cancer and thus require more intensive treatment. The team is utilizing open-top light-sheet microscopy for this purpose. This innovative technique allows for 3D microscopic viewing of biopsies without the need for slicing, preserving the entire tissue structure.

This "slide-free" microscopy technique involves using a light sheet and high-speed cameras to image tissue samples stained with fluorescent dyes and made transparent through a process called optical clearing. Once the 3D pathology datasets are prepared, AI is employed to either highlight the most crucial areas of the biopsy for pathologist review or to autonomously evaluate the tissues. In previous research published in Modern Pathology, the team introduced a deep learning approach that proved more efficient at identifying malignancies in Barrett’s esophagus biopsies than traditional methods, significantly reducing the number of images pathologists need to examine. Furthermore, the team is enhancing the AI model's training process by developing an advanced weakly-supervised deep learning triage system for analyzing 3D pathology datasets.

“We are trying to identify the highest risk patients so that they may receive early treatments that could be critical for their survival,” said Professor Jonathan Liu, professor of mechanical engineering, bioengineering, and laboratory medicine & pathology at the University of Washington. “In our archived tissue samples, some patients progressed to cancer, and we are trying to detect what in their tissues could have predicted that at the earliest stages.”

Related Links:
UW College of Engineering

New
Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Human Papillomavirus Test
RealLine HPV HCR Screen Kit
New
Refrigerated High Speed Microcentrifuge
MC-24R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The newly identified biomarkers could reveal risk factors for SIDS (Photo courtesy of 123RF)

Newly Identified Biomarkers to Pave Way for SIDS Screening Test

Approximately 1,300 infants under the age of one die each year from sudden infant death syndrome (SIDS), and researchers still do not fully understand the causes of these unexpected deaths.... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.