We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

By LabMedica International staff writers
Posted on 24 Jul 2024
Print article
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50% of DCIS patients may develop an invasive stage of cancer, yet identifying which tumors will progress is still a challenge due to unknown biomarkers. Current diagnostic practices include multiplexed staining or single-cell RNA sequencing to determine DCIS stages in tissue samples, but these methods are costly and not widely used. This has led to potential overtreatment of patients with DCIS. Now, a new artificial intelligence (AI) model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images.

The model developed by an interdisciplinary team of researchers from MIT (Cambridge, MA, USA) and ETH Zurich (Zurich, Switzerland) was trained and tested using one of the largest datasets of its kind that built because such tissue images are so easy to obtain. This AI model could potentially streamline the diagnosis process for simpler DCIS cases, reducing reliance on labor-intensive methods and allowing clinicians to focus more on ambiguous cases. Previously, the team found that a low-cost imaging technique called chromatin staining could deliver insights comparable to those from high-cost single-cell RNA sequencing. They hypothesized that combining this staining method with a sophisticated machine-learning model could yield detailed cancer stage information at a lower cost.

They compiled a dataset of 560 tissue sample images from 122 patients across three disease stages to train their AI model. This model learns to represent the state of each cell within an image to determine the cancer's stage. Recognizing that not all cells indicate cancer presence, the team engineered the model to create clusters of cells with similar states, identifying eight distinct states critical for diagnosing DCIS. Some states suggest a higher likelihood of invasive cancer. However, they learnt that knowing the proportion of each cell state was insufficient; understanding how these cells are organized within the tissue was also crucial. The model was enhanced to assess both the proportion and spatial arrangement of cell states, thereby significantly improving its accuracy. When compared to traditional pathologist evaluations, the model showed high concordance in many cases. For less definitive cases, the model provided insights into tissue sample features, like cell organization, which could aid pathologists in their diagnostics. This model’s versatility suggests potential applications beyond breast cancer to other cancers and neurodegenerative diseases, areas the researchers are currently exploring.

“We took the first step in understanding that we should be looking at the spatial organization of cells when diagnosing DCIS, and now we have developed a technique that is scalable,” said MIT’s Caroline Uhler. “From here, we really need a prospective study. Working with a hospital and getting this all the way to the clinic will be an important step forward.”

Related Links:
MIT
ETH Zurich

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Unit-Dose Packaging solution
HLX
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Genome sequencing technology has the potential to detect thousands of genetic disease (Photo courtesy of 123RF)

Gene Technology Outperforms Standard Newborn Screening Tests in Pioneering Study

Since its introduction in the 1960s, newborn screening has grown to encompass dozens of primarily genetic disorders. The standard approach to newborn screening involves detecting specific biomarkers in... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.