We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Customizable AI Tool Helps Pathologists Identify Diseased Cells

By LabMedica International staff writers
Posted on 26 Jun 2024
Print article
Image: Green boxes highlight plasma cells — an indicator of infection — in a sample of the tissue lining the uterus (Photo courtesy of Zou lab and Montine lab)
Image: Green boxes highlight plasma cells — an indicator of infection — in a sample of the tissue lining the uterus (Photo courtesy of Zou lab and Montine lab)

Pathologists are tasked with examining body fluids or tissues to diagnose diseases, a process that involves distinguishing rare disease-indicating cells from thousands of normal cells under a microscope. This skill requires extensive training. Artificial intelligence (AI) can assist by learning to differentiate between healthy and diseased cells from digital pathology images. However, traditional AI tools, once trained, lack flexibility. They are designed for specific tasks, such as identifying cancer cells in one organ but not another, and might not align perfectly with a pathologist's specific needs in different scenarios. Now, a collaborative team of computer scientists and physicians has developed a new AI tool that not only identifies diseased cells but also adapts to a pathologist’s requirements.

Developed at Stanford Medicine (Stanford, CA, USA), the tool, named nuclei.io, functions like a human assistant that evolves with feedback. Starting with the basic function of recognizing different cell types by their nuclei, which house genetic material, the tool is designed to improve through interaction. Within an hour of use, nuclei.io can learn to identify the specific cells of interest to a pathologist, enhancing both the speed and accuracy of their work. During its initial trials at Stanford Medicine, the tool demonstrated its ability to speed up and enhance the diagnostic processes, reducing the time and increasing diagnostic accuracy.

In practical tests, where Stanford pathologists used the tool for tasks such as identifying immune cells in uterine biopsies for endometritis or detecting colon cancer cells in lymph nodes, nuclei.io reduced diagnostic times significantly—from 209 seconds to 79 seconds. The AI assistance made the pathologists 62% faster and 72% more accurate in their diagnoses. It is important to note that nuclei.io does not aim to replace the pathologist but rather guide them more efficiently to areas requiring detailed examination. This is part of a broader aim to ensure patients receive rapid and accurate diagnoses. Stanford Medicine pathologists are continuing to evaluate the tool’s effectiveness on a range of diseased cells, showcasing its potential to become a versatile aid in pathology.

“As we face a growing shortage of pathologists, AI tools that work in tandem with doctors have the potential to speed up some of the more tedious, time-consuming parts of our job,” said professor and chair of pathology Thomas Montine, MD, PhD. “One of the strengths of nuclei.io is that it is agnostic to application. This can be a powerful tool for interpreting any biopsy where we are trying to differentiate healthy and malignant cells. That’s not true of any other major AI tool being used in pathology right now.”

Related Links:
Stanford Medicine

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: Rapid and non-invasive analysis of paracetamol overdose using paper arrow-mass spectrometry (Photo courtesy of Dr Simon Maher/University of Liverpool)

New Saliva Test Rapidly Identifies Paracetamol Overdose

Paracetamol is the most widely used medication worldwide, and its easy availability contributes to its frequent misuse and overdose. Overdosing on paracetamol can lead to liver toxicity, requiring hospitalization.... Read more

Molecular Diagnostics

view channel
Image: The study found previously undetected cancers in pregnant women with abnormal prenatal cfDNA test results (Photo courtesy of NIH)

Abnormal Prenatal Blood Test Results Could Indicate Hidden Maternal Cancers

Researchers have discovered previously undiagnosed cancers in 48.6% of pregnant individuals who received abnormal results from prenatal cell-free DNA (cfDNA) testing, which is typically used to screen... Read more

Hematology

view channel
Image: RHD screening just got easier with single exon NIPT testing (Photo courtesy of Devyser)

Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma

RhD (rhesus D) is a blood group type that can trigger immune responses. Individuals who lack RhD on their red blood cells are classified as RhD-negative. These individuals may produce antibodies against... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: A new test finds bacteria in liquids and indicate their presence by changing color (Photo courtesy of Georgia Kirkos/McMaster University)

New Hands-Free Rapid Test Detects Bacteria in Fluids

Bacteriophages, the most abundant form of life on Earth, are specialized to target and destroy specific types of bacteria. Their natural ability to fight bacteria has long been harnessed to treat infections.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.