We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




New Automated Diagnostic Techniques to Improve Diagnosis of Inflammatory Diseases

By LabMedica International staff writers
Posted on 25 Jun 2024

Necroptosis, a type of cell death, is a natural mechanism through which the body eliminates unwanted or dangerous cells. More...

This process can malfunction in some individuals, leading to diseases characterized by inflammation, commonly impacting the gut, skin, and lungs. Until now, identifying cells undergoing necroptosis in practical settings was challenging. Now, advancements in fully automated diagnostic technology, including liquid handling robots, promise significant improvements for millions of people across the world suffering from inflammatory diseases.

Researchers at the Walter and Eliza Hall Institute of Medical Research (WEHI, Victoria, Australia) have made breakthroughs in detecting necroptosis, which plays a crucial role in various inflammatory conditions such as psoriasis, arthritis, and inflammatory bowel disease. They describe their findings as an "atlas of necroptosis," mapping out cells in the body prone to necroptosis. The research involved refining over 300 different experimental setups to develop a robust set of robotic methods that accurately identify necroptosis in patients with ulcerative colitis or Crohn’s disease. These insights are vital for understanding how necroptosis contributes to different inflammatory disorders and indicate that the condition is triggered by factors like inflammation, bacterial shifts, or immune disturbances.

These discoveries are vital for enhancing the diagnosis of necroptosis, potentially leading to improved and personalized treatments for numerous inflammatory ailments. A key aim of this research was to devise a replicable solution applicable in both lab and clinical environments. The methodologies established provide reproducible techniques that hospitals worldwide can adopt, offering new avenues for treating inflammatory diseases. This development of automated methods to detect necroptosis is just the start, as the researchers intend to apply their methods to study other gastrointestinal disorders such as celiac disease and various inflammatory conditions affecting the skin, lungs, and kidneys.

“We can now confidently visualize where and when necroptotic cell death can happen in the body,” said study co-leader and WEHI Inflammation division head, Professor James Murphy. "Most importantly, researchers and clinicians around the world will now be able to use these new methods, especially as liquid handling robots for immunostaining are common in hospitals and pathology departments worldwide. The next phase is to use these robotic methods to advance our understanding of which diseases could benefit from medicines that block necroptosis."

Related Links:
WEHI


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Serological Pipet Controller
PIPETBOY GENIUS
New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Capillary Blood Collection Tube
IMPROMINI M3
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The ONC IN-CYT platform leverages cross indication biomarker cyto-signatures (Photo courtesy of OraLiva)

AI-Powered Cytology Tool Detects Early Signs of Oral Cancer

Each year, 54,000 Americans are diagnosed with oral cancer, yet only 28% of cases are identified at an early stage, when the five-year survival rate exceeds 85%. Most diagnoses occur in later stages, when... Read more

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: PD-1 protein blockade is the standard treatment for advanced melanoma among the different types of immunotherapy (Photo courtesy of 123RF)

Precision Tool Predicts Immunotherapy Treatment Failure in Melanoma Patients

Melanoma, though accounting for only about 4% of skin tumors, is the deadliest form of skin cancer due to its high potential to metastasize. While immunotherapy, especially PD-1 protein blockade, has revolutionized... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.