We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

By LabMedica International staff writers
Posted on 06 May 2024
Print article
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe, but this often yields insufficient blood for many tests and can result in inaccurate laboratory values that vary between measurements. Now, researchers have developed an innovative device that uses microneedles and a suction cup instead of a large needle, which could be especially beneficial for those with needle phobia. This device can collect more blood than the traditional finger prick, enhancing the reliability of diagnostic measurements. Additionally, its low production cost makes it feasible for use in developing countries.

The new device for taking blood samples developed by researchers at ETH Zurich (Zurich, Switzerland) operates on a principle similar to that of a leech and is less invasive than traditional arm blood draws. It is user-friendly and can be operated by individuals without medical training. Although it does not gather as much blood as a conventional needle, it significantly surpasses the volume collected from a finger prick. The concept for this device emerged while the ETH researchers were developing a suction cup intended to administer medication through the mucous membranes inside the mouth, during which they studied how leeches attach to their hosts using a sucker and then draw blood.

The device mimics how leeches work: after attaching, they penetrate the skin with their teeth and create negative pressure to draw blood. Similarly, the new device features a suction cup about two and a half centimeters in diameter that adheres to the patient's upper arm or back. It houses a dozen microneedles that pierce the skin when pressed against it. Within minutes, the negative pressure collects enough blood for diagnostic testing. This cost-effective device could be especially useful in regions like sub-Saharan Africa, where it could significantly impact the fight against diseases such as malaria.

An additional safety feature of this device is that the microneedles are enclosed within the suction cup, reducing the risk of injury both during use and after disposal, unlike conventional needles. Currently, the suction cup is made of silicone, and the microneedles are steel, but the team is developing a version using fully biodegradable materials. While this device has been tested on pigs and extensive manufacturing details have been prepared, further optimization of the materials and safe use testing in humans are needed. The researchers are hopeful that their innovative device will soon be aiding the health of children and all who fear needles.

Related Links:
ETH Zurich 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Hemoglobin Testing System
VARIANTnbs

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.