We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Image-Based AI Shows Promise for Parasite Detection in Digitized Stool Samples

By LabMedica International staff writers
Posted on 17 Apr 2024
Print article
Image: AI played critical role in intestinal worm infection screening among children in Kenya (Photo courtesy of University of Helsinki)
Image: AI played critical role in intestinal worm infection screening among children in Kenya (Photo courtesy of University of Helsinki)

Infections from soil-transmitted helminths (STHs), commonly known as intestinal parasitic worms, are among the most widespread neglected tropical diseases and impose a significant health burden in low- and middle-income countries, particularly among school-aged children. These infections often lead to chronic health issues that can cause disability, social stigma, and for their substantial economic impacts on communities. STHs are notorious role in nutrient loss, which can contribute to neurocognitive impairments, stunted growth and development, and persistent fatigue in affected children. Additionally, these parasites are a major cause of morbidity and complications during pregnancy. The standard diagnostic method for STHs involves manual microscopy, which requires up to 10 minutes per slide and is hindered by a lack of skilled professionals and access to necessary equipment and lab infrastructure in highly affected regions. There is a pressing need for improved diagnostic techniques, particularly for detecting infections of mild intensity, to effectively manage and aim for the elimination of STHs as a public health concern. Now, an artificial intelligence (AI) microscopy system has been shown to accurately identify intestinal worm infections, especially light-intensity infections that could be overlooked when using manual microscopy.

The new study by a multi-institutional team of specialists from the Karolinska Institute (Stockholm, Sweden) and University of Helsinki (Helsinki, Finland) marked the first clinical trial of the system to detect worm infections in a remote setting with whole-slide images. The study was carried out in rural areas of Kwale County, Kenya, where there is a high prevalence of STHs among children. During the study, 1,335 school-aged children were screened using the deep learning-based system for parasitic worm egg detection, with results compared against those obtained through expert manual microscopy.

The analysis of digitally scanned stool samples using the deep learning system demonstrated high diagnostic accuracy in identifying three common types of parasitic worms: Ascaris lumbricoides (giant roundworm), Trichuris trichiura (whipworm), and hookworm (Ancylostoma duodenale or Necator americanus). The AI was able to detect between 76% and 92% of the infections identified by trained lab technicians, depending on the type of worm. Notably, the AI system identified a significant number of light-intensity infections that were missed in manual microscopy evaluations. In fact, in 79 samples (10% of the total), which were initially determined to be negative by manual microscopy, the AI system detected the presence of parasitic worm eggs. Moreover, the AI system provides a digital record of each sample that can be preserved for further analysis, offering a significant advantage over human samples, which typically dry out within hours and become more challenging for further analysis.

“We have shown that we can use our testing in a resource-limited setting and get high accuracy. Our method was especially efficient in light-intensity infections,” said Principal Investigator Professor Johan Lundin, MD, PhD, from the Karolinska Institutet. “With AI, once our sample is digitised, it takes just a few second and looks at the entire sample and is able to very accurately find the parasite eggs.”

Related Links:
Karolinska Institute
University of Helsinki

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.