We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Image-Based AI Shows Promise for Parasite Detection in Digitized Stool Samples

By LabMedica International staff writers
Posted on 17 Apr 2024

Infections from soil-transmitted helminths (STHs), commonly known as intestinal parasitic worms, are among the most widespread neglected tropical diseases and impose a significant health burden in low- and middle-income countries, particularly among school-aged children. More...

These infections often lead to chronic health issues that can cause disability, social stigma, and for their substantial economic impacts on communities. STHs are notorious role in nutrient loss, which can contribute to neurocognitive impairments, stunted growth and development, and persistent fatigue in affected children. Additionally, these parasites are a major cause of morbidity and complications during pregnancy. The standard diagnostic method for STHs involves manual microscopy, which requires up to 10 minutes per slide and is hindered by a lack of skilled professionals and access to necessary equipment and lab infrastructure in highly affected regions. There is a pressing need for improved diagnostic techniques, particularly for detecting infections of mild intensity, to effectively manage and aim for the elimination of STHs as a public health concern. Now, an artificial intelligence (AI) microscopy system has been shown to accurately identify intestinal worm infections, especially light-intensity infections that could be overlooked when using manual microscopy.

The new study by a multi-institutional team of specialists from the Karolinska Institute (Stockholm, Sweden) and University of Helsinki (Helsinki, Finland) marked the first clinical trial of the system to detect worm infections in a remote setting with whole-slide images. The study was carried out in rural areas of Kwale County, Kenya, where there is a high prevalence of STHs among children. During the study, 1,335 school-aged children were screened using the deep learning-based system for parasitic worm egg detection, with results compared against those obtained through expert manual microscopy.

The analysis of digitally scanned stool samples using the deep learning system demonstrated high diagnostic accuracy in identifying three common types of parasitic worms: Ascaris lumbricoides (giant roundworm), Trichuris trichiura (whipworm), and hookworm (Ancylostoma duodenale or Necator americanus). The AI was able to detect between 76% and 92% of the infections identified by trained lab technicians, depending on the type of worm. Notably, the AI system identified a significant number of light-intensity infections that were missed in manual microscopy evaluations. In fact, in 79 samples (10% of the total), which were initially determined to be negative by manual microscopy, the AI system detected the presence of parasitic worm eggs. Moreover, the AI system provides a digital record of each sample that can be preserved for further analysis, offering a significant advantage over human samples, which typically dry out within hours and become more challenging for further analysis.

“We have shown that we can use our testing in a resource-limited setting and get high accuracy. Our method was especially efficient in light-intensity infections,” said Principal Investigator Professor Johan Lundin, MD, PhD, from the Karolinska Institutet. “With AI, once our sample is digitised, it takes just a few second and looks at the entire sample and is able to very accurately find the parasite eggs.”

Related Links:
Karolinska Institute
University of Helsinki


New
Gold Member
Thyroid-Stimulating Hormone Test
ULTRA-TSH
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Calprotectin Test
CALiaGold
New
STI Test
REALQUALITY RQ-SevenSTI
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Scanning electron microscopy images showing 3D micro-printed Limacon-shaped whispering-gallery-mode microcavities with different amounts of deformation (Photo courtesy of A. Ping Zhang/PolyU)

Tiny Microlaser Sensors with Supercharged Biosensing Ability to Enable Early Disease Diagnosis

Optical whispering-gallery-mode microlaser sensors function by trapping light within tiny microcavities. When target molecules bind to the cavity, they induce subtle changes in the laser’s frequency, allowing... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.