We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Novel Test Identifies Aggressive Ovarian Cancers Early

By LabMedica International staff writers
Posted on 07 Mar 2024
Print article
Image: An algorithm can identify high-risk precancerous lesions on the fallopian tubes (Photo courtesy of Johns Hopkins Medicine)
Image: An algorithm can identify high-risk precancerous lesions on the fallopian tubes (Photo courtesy of Johns Hopkins Medicine)

Ovarian high-grade serous carcinoma (HGSC) is the predominant form of ovarian cancer affecting women. Serous tubal intraepithelial carcinomas (STICs), which are precancerous lesions on the fallopian tubes, are considered the main precursors of HGSC. Women undergoing salpingectomy, the surgical removal of fallopian tubes, often do so without a detailed examination of these precancerous lesions. The challenge lies in the molecular diversity of STICs and the difficulty in detecting aggressive forms early, owing to their small size. In response to this urgent diagnostic need, researchers have developed an algorithm to identify STICs before they can progress to cancer.

This pioneering algorithm, named “REAL-FAST” (RealSeqS-based algorithm for fallopian tube aneuploidy pattern in STIC), was developed by a team at Johns Hopkins Medicine (Baltimore, MD, USA). In a pilot study, REAL-FAST distinguished five unique types of precancerous lesions in fallopian tubes, with two identified as particularly aggressive and often linked to recurrent HGSC. This discovery marks the first molecular identification of distinct genetic characteristics in STICs. The team employed a method known as Repetitive Element Aneuploidy Sequencing System (RealSeqS) to sequence DNA from 150 samples, focusing on aneuploidy levels – the presence of abnormal numbers of DNA chromosomes – in STICs, HGSC, and normal samples. The study revealed that while normal samples showed minimal aneuploidy, STICs exhibited significant non-random genetic alterations. This included notable whole or partial deletions on chromosome 17, where the pivotal tumor suppressor genes TP53 and BRCA1 are located. This loss of chromosome 17 provides insight into the simultaneous inactivation of these genes, critical in HGSC development. The study noted a particular association between germline mutations in the BRCA1 gene (chromosome 17) and HGSC risk, unlike BRCA2 (chromosome 13).

Based on these insights, the team developed the REAL-FAST algorithm to categorize samples into distinct molecular clusters, irrespective of their structural traits. It identified an STIC subgroup with unique chromosomal changes linked to increased cell proliferation and abnormal growth. The algorithm's efficacy in detecting STICs and HGSCs proved remarkable, correctly identifying cancer presence 95.8% of the time and accurately ruling out its absence 97.1% of the time. This suggests that only certain STICs lead to HGSC, characterized by specific chromosomal abnormalities. Despite the need for further clinical validation to link molecular findings with patient outcomes, the researchers are optimistic that a deeper understanding of HGSC development will soon foster enhanced diagnostic tools and better patient prognoses, impacting the lives of thousands of women diagnosed with ovarian cancer annually.

“This is a high-risk setting — these patients need more immediate diagnostic approaches,” said Christopher Douville, Ph.D., assistant professor of oncology at the Johns Hopkins University School of Medicine. “This test is about identifying precursor lesions before they progress to cancer.”

Related Links:
Johns Hopkins Medicine

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Hemoglobin Testing System
VARIANTnbs

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.