We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Platform Technology Brings Power of `Multiplex` Imaging to Clinical Pathology

By LabMedica International staff writers
Posted on 23 Jun 2023
Print article
Image: The Orion tool combines structural details with molecular information about a tumor (Photo courtesy of Harvard Medical School)
Image: The Orion tool combines structural details with molecular information about a tumor (Photo courtesy of Harvard Medical School)

For over a hundred years, pathologists have been dependent on histology, a method that involves examining cells and tissues under a microscope to identify cancerous patterns. Now, a new tool promises to improve this process by providing deep insights into the cancerous tissue. By combining histological and molecular data, the tool can provide a deeper understanding of the type, behavior, and probable response to the treatment of a tumor.

The tool, named Orion, is the product of extensive research and development carried out by a team of researchers led by Harvard Medical School (Boston, MA, USA). Orion is a sophisticated digital imaging platform that integrates the insights gathered from traditional histology with the details derived from molecular imaging of a tumor sample. Over the years, the team has been focusing on refining imaging tools for human tissue samples. In their most recent study, they integrated a technique known as cyclic immunofluorescence, or CyCif, with histology to generate comprehensive maps of colorectal cancer. These maps, accessible to scientists worldwide, offer an unprecedented level of detail about the tumors.

However, the researchers wanted to make these imaging tools accessible to clinicians who regularly analyze tumor samples under a microscope to gather essential information for diagnosis and treatment. They designed a digital imaging platform capable of quickly collecting and analyzing images from both traditional and multiplex immunofluorescence methods on the same tissue sample. The resulting image integrates information from both techniques, providing a comprehensive view of the tumor.

Using Orion, the researchers examined tumor samples from over 70 patients with colorectal cancer. The tool provided valuable histological and molecular information for each sample and identified biomarkers that were common in patients with severe disease. These biomarkers, based on specific combinations of tumor features, could predict the progression of colorectal cancer. The researchers are optimistic that, with further refinement, Orion can contribute significantly to the diagnosis and treatment of cancer and other diseases by providing in-depth details about tumors and patient samples. While Orion is in its nascent stages of development, the promising initial results substantiate the potential utility of the platform in a clinical setting.

The researchers plan to refine Orion further by testing it on a larger patient pool and exploring effective combinations of antibodies. The team aims to streamline the platform to make it quicker and more affordable and to extend its application to other cancers like lung cancer and melanoma, and potentially to other conditions such as kidney disease and neurodegenerative diseases. The team envisions Orion as a tool that pathologists can integrate into their existing workflow to supplement their histological expertise with molecular details, providing a holistic understanding of a sample. Significantly, Orion's digital nature enables pathologists to examine the images on any computer, thereby eliminating the need for a microscope in a lab or clinic.

“Pathologists already do a huge amount of work with histology to diagnose a patient and understand their disease, but with this tool to augment their knowledge, they will basically have a ‘super view’ of the sample,” said Jia-Ren Lin, study lead author and platform director in the Laboratory of Systems Pharmacology at HMS.

Related Links:
Harvard Medical School 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Molecular Diagnostics

view channel
Image: Researchers have found the first evidence of testing for the alpha-synuclein protein in blood samples via seed amplification assay (Photo courtesy of Shutterstock)

Blood Test to Detect Alpha-Synuclein Protein Could Revolutionize Parkinson's Disease Diagnostics

Currently, Parkinson's disease (PD) is identified through clinical diagnosis, typically at a later stage in the disease's progression. There is a pressing need for an objective and quantifiable biomarker... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.