We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Genetic Testing Determines Safest Dose of Blood Thinner

By LabMedica International staff writers
Posted on 12 Oct 2017
Warfarin, commonly known as Coumadin, is frequently used to prevent a life-threatening blood clot. More...
It is often prescribed to people having hip or knee replacement surgery, as well as to individuals with certain heart conditions that leave them vulnerable to a stroke.

Warfarin affects people differently, and genetics come into play. Too much warfarin can cause internal bleeding, while an inadequate dose fails to prevent blood clots. Over the last 10 years, warfarin has led to more medication-related emergency room visits among older adults than any other drug. Genetic testing can help determine the safest dose of the blood thinner warfarin, with fewer side effects, in patients undergoing joint replacement surgery.

A team of medical scientists collaborating with those at the Hospital for Special Surgery (New York, NY, USA) collected data on a total of 1,600 individuals age 65 and older undergoing hip or knee replacement surgery. Patients were randomly assigned to one of two groups. One group received warfarin dosing based on clinical factors known to affect warfarin dose such as age, height and weight, gender, race, and other medications; the second group's dose was based on these factors plus genetic variants. The study zeroed in on genetic variants in three genes, and this genetic information helped guide warfarin dosing during the first 11 days of treatment.

Patients were genotyped for the following polymorphisms: Vitamin K Epoxide Reductase Complex Subunit 1(VKORC1-1639G>A), cytochrome P450 family 2 subfamily C member 9 (CYP2C9*2), CYP2C9*3, and Cytochrome P450 Family 4 Subfamily F Member 2 (CYP4F2 V433M). Patients were monitored for bleeding, blood clots and warfarin overdose and 15% of the patients who were given warfarin in the traditional manner experienced at least one adverse effect, compared to only 11% patients whose warfarin dosing was guided by genetic testing, a statistically significant difference.

Anne R. Bass, MD, a rheumatologist and co-author of the study said, “Warfarin is very effective in preventing blood clots, but it's very difficult to regulate. About half of the population, because of genetic variants, is very sensitive to warfarin or has a very unpredictable or delayed response to the drug. This is the first study to show that adjusting the dose based on these genetic variants makes warfarin safer for patients. This was really a study addressing warfarin management and warfarin safety, so I think you can extrapolate the results to other patients taking this blood thinner, such as those with atrial fibrillation.” The study was published on September 26, 2017, in the Journal of the American Medical Association.

Related Links:
Hospital for Special Surgery


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Calprotectin Assay
Fecal Calprotectin ELISA
New
Ultrasonic Cleaner
UC 300 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.