We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Diagnostic Technique Could Revolutionize Identification of Pathogens in Biological Samples

By LabMedica International staff writers
Posted on 26 Apr 2023
Print article
Image: The new diagnostic technique could rapidly detect low-abundance pathogens in biological samples (Photo courtesy of Freepik)
Image: The new diagnostic technique could rapidly detect low-abundance pathogens in biological samples (Photo courtesy of Freepik)

In cases where a patient suffers from an infection, particularly in their bloodstream, traditional methods can take up to seven days to identify pathogens. This delay impedes prompt and accurate diagnosis and treatment, negatively affecting the patient's prognosis. A similar lag occurs in cell therapy product manufacturing, where it can take seven to 14 days to detect contaminants like bacteria, viruses, and fungi. As cell therapy products cannot be sterilized, early contaminant detection is crucial to restart the production cycle, ensuring the safe and prompt delivery of these products to patients.

A research team from the Singapore-MIT Alliance for Research and Technology (SMART, Singapore) is developing an innovative diagnostic method capable of quickly identifying low-abundance pathogens in biological samples. In prior research, the team developed electrostatic microfiltration as an efficient sample preparation device for bacteria enrichment. Their current goal is to integrate this microfilter with mainstream detection methods, allowing for bacterial detection using digital loop-mediated isothermal amplification—a type of polymerase chain reaction (PCR). The resulting system will be fast, single-use, portable, and user-friendly, eliminating the need for a highly specialized facility. Additionally, it will be compatible with other advanced downstream detection techniques and can easily be incorporated into existing commercial kits or facilities to enhance detection method performance.

“This project builds on on-going projects at SMART focused on separating viruses and bacteria – which are much smaller than mammalian cells – from biological samples, and could revolutionize the way pathogens are identified,” said Dr. Yaoping Liu, Senior Postdoctoral Associate at SMART CAMP, who is leading the research team. “The use of an efficient and relatively cost-effective method could significantly improve the prognosis of sepsis and other infectious diseases, and allow the delivery of timely and more personalized care.”

Related Links:
SMART 

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)

Advanced Liquid Biopsy Technology Detects Cancer Earlier Than Conventional Methods

Liquid biopsy technology has yet to fully deliver on its significant potential. Traditional methods have focused on a narrow range of cancer-associated mutations that are often present in such low quantities... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.