We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Researchers Present Definitive Molecular Structure of mTORC1

By LabMedica International staff writers
Posted on 27 Dec 2015
By combining cryoelectron microscopy with X-ray crystallographic data, researchers have been able to define the structural architecture of the protein complex mTORC1 (mammalian target of rapamycin complex 1).

Mammalian target of rapamycin (mTOR) is a master regulator of protein synthesis that under ordinary conditions induces cells to grow and divide. More...
In situations of severe nutrient deprivation mTOR prevents protein synthesis so that the cell can conserve energy. However, in cancer cells the mTOR pathway does not function correctly and signals tumor cells to grow, divide, undergo metastasis, and invade new, healthy tissues. Functionally, mTOR is the catalytic subunit of two structurally distinct complexes: mTORC1 and mTORC2. Both complexes localize to different subcellular compartments, thus affecting their activation and function.

MTOR complex 1 (mTORC1) is composed of the proteins mTOR, regulatory-associated protein of mTOR (Raptor), mammalian lethal with SEC13 protein 8 (MLST8), and the non-core components PRAS40 and DEPTOR. This complex functions as a nutrient/energy/redox sensor and controls protein synthesis. The activity of mTORC1 is stimulated by insulin, growth factors, serum, phosphatidic acid, amino acids (particularly leucine), and oxidative stress.

The extremely large size of the mTORC1 complex has so far prevented researchers from being able to resolve its structure. However, in a study published in the December 17, 2015, online edition of the journal Science, investigators from the University of Basel (Switzerland) described combining cryo-electron microscopy at 5.9 angstrom [1 angstrom = 0.1 nm] resolution with crystallographic studies of Chaetomium thermophilum Raptor at 4.3 angstrom resolution.

The structural details established during this study served to explain how FKBP (FK506 binding protein)-rapamycin and architectural elements of mTORC1 limited access to a recessed active site in the complex. Consistent with a role in substrate recognition and delivery, the conserved N-terminal domain of Raptor was juxtaposed with the kinase active site.

"The partner proteins of mTOR have already been identified in earlier biochemical studies", said senior author Dr. Timm Maier, professor of structural biology at the University of Basel. "However, it has remained unclear how the proteins interact precisely. But it does not make sense to examine the individual components alone, as the interactions of all the proteins in the complex are critical for its function. The whole is much more than the sum of its parts. Although there is much known about mTORC1, our study revealed surprising new insight. The architecture of this huge protein complex is quite exceptional. We could determine the precise interaction sites of the partner proteins and how they are arranged, and thus elucidate the function of the individual partners."

Related Links:

University of Basel



Gold Member
Serological Pipets
INTEGRA Serological Pipets
Collection and Transport System
PurSafe Plus®
Autoimmune Disease Diagnostic
Chorus ds-DNA-G
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Over 100 new epigenetic biomarkers may help predict cardiovascular disease risk (Photo courtesy of 123RF)

Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk

Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.